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This project

1. Document a fall in inflation persistence and volatility since the mid 1980s

2. Show that the NK model cannot explain the fall in persistence

3. Document a change in information frictions in the mid 1980s

4. Build a noisy information framework

5. Implications on the (lack of) flattening in the Phillips curve
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Inflation dynamics have changed since the mid 1980s

Figure: Time series of inflation, with subsample mean and standard deviation.

Structural Break Autocorrelation function Rolling Sample Regression Time-varying parameter regression Unit root test GARCH
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Inflation dynamics in NK models
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Inflation dynamics in NK models

◮ Understand the change in inflation dynamics via structural framework

◮ Determinants of inflation persistence and volatility

◮ Study 3 causal explanations: changes in...
◮ Structural shocks (no change on persistence, fall in volatility)

Benchmark Technology & cost-push shocks

◮ Monetary stance (no change on persistence, fall in volatility)
Taylor rule Indeterminacy Discretion Commitment

◮ Intrinsic persistence (small change in persistence, fall in volatility)
Price indexation Trend inflation

◮ NK framework (extended in several dimensions) cannot explain the change in persistence

◮ Propose a noisy information environment
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Noisy Information
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Motivation for Noisy Information

◮ Federal Reserve disclosure policy over time
◮ Before 1967: Fed policy decisions announced once a year in the Annual Report
◮ 1967: release the directive in the Policy Report (PR) 90 days after the decision
◮ 1976: enlarged the PR and reduced delay to 45 days
◮ 1977-1993: objectives, ‘tilt’, ranking of policy factors, minutes
◮ 1994: immediate release of PR if action
◮ 1999: immediate release of tilt
◮ 2000: immediate announcement after each meeting

◮ Quantify this increase in information using the Coibion & Gorodnickenko (AER 2015)
regression design
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Empirical Evidence on Dispersed Information

◮ Expectation data from the Survey of Professional Forecasters
◮ Forecasters are asked to report their nowcast, forecast of next quarter, ..., up until a year
◮ Quarterly, 1968:IV-2020:I
◮ Alleviates the concern that firms could figure out Fed actions by hiring market watchers

◮ Measure of belief formation frictions: Coibion & Gorodnickenko (AER 2015) underrevision

◮ Define πt+3,t =
Deflatort+3−Deflatort−1

Deflatort−1

◮ Denote individual i ’s forecast made in period t of annual inflation as Eitπt+3,t

◮ Denote average forecast as Etπt+3,t =
1
Nt

!
i=1,...,Nt

Eitπt+3,t

◮ Structural break version of CG

πt+3,t − Etπt+3,t = α+
!
β + β∗, {t≥t∗}

"
(Etπt+3,t − Et−1πt+3,t) + ut

Regression Design
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Table: Regression table

(1) (2) (3) (4)
CG Regression 1968:IV-1984:IV 1985:I-2020:I Structural Break

Revision 1.230∗∗∗ 1.414∗∗∗ 0.169 1.501∗∗∗

(0.250) (0.283) (0.193) (0.317)

Revision × {t≥t∗} -1.111∗∗∗

(0.379)

Constant -0.0875 0.271 -0.317∗∗∗ -0.135∗

(0.0696) (0.185) (0.0478) (0.0690)

Observations 197 58 139 197

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Rolling Sample Time-varying parameter Livingston
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Noisy Information NK model

◮ Assumptions:

1. Households and the Central bank have FIRE
2. Firms have RE but cannot observe the state of the economy

◮ Monetary policy shock vt is the only aggregate state variable
◮ Each firm j observes noisy signal xjt on the CB action vt ,

xjt = vt + ujt , with ujt ∼ N (0,σ2
u)

◮ Model equations:

ỹt = − 1

σ
(it − Etπt+1) + Et ỹt+1

πjt = κθEjt ỹt + (1− θ)Ejtπt + βθEjtπj,t+1, πt =

#
πjt dj

it = φππt + φy ỹt + vt , vt = ρvvt−1 + εvt , εvt ∼ N (0,σ2
ε)

Derivation PC Optimal Expectations Parameters

◮ Model the increase in information disclosure as a decrease in σu (structural break)
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Inflation dynamics in the NINK model

Proposition 1 ( Full Proposition )

In the dispersed information framework, equilibrium inflation dynamics are given by

πt = ϑπt−1 − ψπχ(ϑ)vt

where ϑ(σu,φπ) ∈ (0, ρv ) governs information frictions, and in the limit of no info frictions
(σu → 0), ϑ → 0 and χ → 1

Proposition 2

The theoretical counterpart of the coefficient βCG is given by

βCG =
λ2{(1− λ2)ϑ2(1− ρϑ) + [ρ(ϑ− λ)− ϑλ(1− ρλ)](1− ϑλ)}

(ρ− λ)(ϑ− λ)(1− ϑλ)

where λ = ρ(1− G ) ∈ (0, 1)
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(a) Inflation persistence increasing in noise (b) Inflation persistence increasing in CG coefficient
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Persistence Result
◮ Calibration to match βCG :

Pre-1985 Post-1985
φπ 1 2
σu βCG = 1.501 βCG = 0.390

◮ The model produces a fall in inflation persistence: from ϑpre = 0.739 to ϑpost = 0.444
◮ Data: ρπ,pre = 0.814 and ρπ,post = 0.491

(1) (2)
OLS Newey

πt−1 0.814∗∗∗ 0.814∗∗∗

(0.0481) (0.0483)

πt−1× {t≥t∗} -0.323∗∗∗ -0.323∗∗∗

(0.0807) (0.0804)

Observations 207 207

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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“Inflation Disconnect” Puzzle and
(lack of) flattening of Phillips Curve
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“Inflation Disconnect” Puzzle

◮ Fall in the sensitivity of inflation wrt other (real) variables (DelNegro et al. 2020)

◮ Most well-known inflation dynamics in the NKPC

πt = κỹt + βEtπt+1

◮ Inflation only related to output through the slope κ
◮ Literature has extensively focused on showing that κ has flattened
◮ Inflation independent of any other (real) variable

◮ Show the “inflation disconnect” puzzle without resorting to κ

◮ Two tests
◮ Agnostic stance in expectations
◮ Using our NI framework disconnect occurs via expectation formation changes
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Test 1: Agnostic stance

◮ Recall the individual Phillips curve for
firm j

πjt = κθEjt ỹt + (1− θ)Ejtπt + βθEjtπj,t+1

◮ Iterating forward and aggregating, we
can write

πt = κθ

∞$

k=0

(βθ)kEf

t ỹt+k + (1− θ)
∞$

k=0

(βθ)kEf

tπt+k

◮ Inflation related to output via κ and
general expectations

◮ Test structural break in κ controlling for
non-standard expectations Livingston

Table: Regression table

(1) (2) (3)
NKPC Break Output Break

Eft ỹt 0.108∗∗∗ 0.0781∗ 0.0810∗
(0.0330) (0.0451) (0.0459)

Eft ỹt+4 0.290∗∗∗ 0.316∗∗∗ 0.215∗∗
(0.0707) (0.0793) (0.0931)

Eft πt 1.252∗∗∗ 1.214∗∗∗ 1.205∗∗∗
(0.0906) (0.0963) (0.119)

Eft πt+4 -0.327∗∗∗ -0.308∗∗∗ -0.256∗∗
(0.100) (0.104) (0.125)

Eft ỹt× {t≥t∗} 0.0775 0.0885

(0.0596) (0.0593)

Eft ỹt+4× {t≥t∗} -0.0846 0.0990

(0.0858) (0.109)

Eft πt× {t≥t∗} 0.0305

(0.177)

Eft πt+4× {t≥t∗} -0.262

(0.173)

Constant -0.233∗∗∗ -0.210∗∗ -0.160
(0.0581) (0.102) (0.0969)

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Test 2: NI Phillips Curve
◮ Anchoring, myopia and relevance of future output gaps

Proposition 3 ( Full )

The as if Phillips curve dynamics are described by

πt = ωπππt−1 + κỹt + δπyEt ỹt+1 + δππβEtπt+1

Red terms endogenous to σu

◮ Model implied dynamics in the pre-1985 period (φπ,βCG) = (1, 1.50)

πt = 0.562πt−1 + 0.172ỹt + 0.000Et ỹt+1 + 0.405Etπt+1

◮ Model implied dynamics in the pre-1985 period (φπ,βCG) = (2, 0.39)

πt = 0.399πt−1 + 0.172ỹt − 0.114Et ỹt+1 + 0.633Etπt+1

◮ Suppose an econometrician assumes ỹt ∼ AR(1):

0.172ỹt − 0.114Et ỹt+1 = (0.172− 0.114ρy )ỹt
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Table: Regression table

(1) (2) (3) (4) (5)
Standard NKPC Break DI NKPC Break Output Break Inflation

ỹt -0.0261 -0.114∗∗ 0.192∗∗ 0.273∗ 0.265∗∗
(0.0236) (0.0452) (0.0941) (0.142) (0.112)

πt+1 0.991∗∗∗ 0.996∗∗∗ 0.677∗∗∗ 0.646∗∗∗ 0.499∗∗∗
(0.0175) (0.0171) (0.0740) (0.0876) (0.104)

πt−1 0.309∗∗∗ 0.340∗∗∗ 0.481∗∗∗
(0.0743) (0.0873) (0.102)

ỹt+1 -0.221∗∗ -0.307∗∗ -0.272∗∗
(0.104) (0.142) (0.120)

ỹt × {t≥t∗} 0.122∗∗ -0.183

(0.0566) (0.198)

ỹt+1 × {t≥t∗} 0.191

(0.196)

πt−1 × {t≥t∗} -0.366∗

(0.200)

πt+1 × {t≥t∗} 0.406∗

(0.209)

Observations 203 203 203 203 203

HAC robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Backup Slides
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Structural Break Back

◮ Wald test positive about a structural break in 1985:Q1
◮ Regress

πt = απ + απ,∗ {t≥t∗} + ρππt−1 + ρπ,∗πt−1 {t≥t∗} + εt

(1) (2) (3) (4) (5) (6)
Deflator CPI PCE

πt−1 0.880∗∗∗ 0.785∗∗∗ 0.738∗∗∗ 0.793∗∗∗ 0.816∗∗∗ 0.837∗∗∗

(0.0466) (0.0755) (0.0628) (0.0827) (0.0461) (0.0672)

πt−1 × {t≥t∗} -0.287∗∗ -0.497∗∗∗ -0.434∗∗∗

(0.144) (0.143) (0.117)

Constant 0.400∗∗ 1.320∗∗∗ 1.008∗∗∗ 1.396∗∗ 0.618∗∗∗ 0.990∗∗

(0.166) (0.471) (0.262) (0.542) (0.182) (0.431)

Constant× {t≥t∗} -0.263 0.370 0.283
(0.543) (0.607) (0.477)

Observations 206 206 206 206 206 206

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Autocorrelation Function Back

(a) GDP Deflator, 1969-1985 (b) GDP Deflator, 1985-2020

Figure: Autocorrelation function of GDP Deflator
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Autocorrelation Function Back

(a) CPI, 1969-1985 (b) CPI, 1985-2020

Figure: Autocorrelation function of CPI
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Autocorrelation Function Back

(a) PCE, 1969-1985 (b) PCE, 1985-2020

Figure: Autocorrelation function of PCE
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Rolling-Sample Regression Back

◮ Regress πt = ρππt−1 + εt using 14-year window samples

(a) GDP Deflator (b) CPI (c) PCE

Figure: First-order autocorrelation of GDP Deflator, CPI and PCE, rolling sample
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Unit Root Test Back

◮ Cross-sample unit root analysis
◮ Augmented Dickie-Fuller
◮ Phillips-Perron

◮ Null hypothesis (unit root) cannot be rejected in the pre-1985 sample
◮ Strong rejection of the null in the post-1985 sample

p-values, null = series has unit root
1969-2020

Variable ADF Phillips-Perron
GDP Deflator 0.23 0.02
CPI 0.11 0.00
PCE 0.16 0.00

1969-1985
Variable ADF Phillips-Perron
GDP Deflator 0.15 0.07
CPI 0.17 0.09
PCE 0.055 0.09

1985-2020
Variable ADF Phillips-Perron
GDP Deflator 0.07 0.00
CPI 0.00 0.00
PCE 0.01 0.00

25 / 18



Time-Varying Parameter Regression Back

◮ Consider the framework

πt = ρtπt−1 + εt , εt ∼ N (0,σ2
ε)

◮ Persistence coefficient follows a random walk

ρt+1 = ρt + ut , ut ∼ N (0,Σu)

◮ Bayesian estimation, prior selection is standard following Nakajima (2011)

Figure: Persistence over time
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Structural Break Back

◮ GMM regression on
it = (φπ + φπ,∗ {t≥t∗})πt + φyyt + εt

◮ Instruments: four lags of
◮ effective Fed funds rate
◮ GDP deflator
◮ CBO output gap
◮ commodity price inflation
◮ real M2 growth
◮ spread between long-term bond rate

and 3-month Treasury Bill

Table: Regression table

(1) (2)
1969:IV-2020:I Break

πt 1.154∗∗∗ 1.323∗∗∗

(0.112) (0.140)

yt 0.353∗∗∗ 0.309∗∗

(0.121) (0.128)

πt × {t≥t∗} 0.958∗∗∗

(0.284)

Observations 204 204

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Benchmark
◮ Dynamic IS curve

ỹt = − 1

σ
(it − Etπt+1) + Et ỹt+1 (1)

◮ NK Phillips curve
πt = κỹt + βEtπt+1 (2)

◮ Monetary policy rule

it = φππt + φyyt + vt , vt = ρvvt−1 + εvt , εvt ∼ N (0,σ2
ε) (3)

◮ Introducing (3) into (1), we can write (1)-(2) as a system of two first-order
forward-looking stochastic equations

◮ Inflation dynamics are given by

πt = −ψπvt

= ρvπt−1 − ψπε
v
t (4)

where ψπ is decreasing in φπ
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Measuring the Shock Process

◮ Problem: vt is unobservable, but we have estimates on monetary policy shocks εvt from
Romer and Romer (2004), updated until 2007 by Wieland & Yang (2020)

◮ Solution: indirect estimation on ρv
◮ Using the AR(1) property of the vt shock process, we can write the Taylor rule as

it = ρv it−1 + (φππt + φyyt)− ρv (φππt−1 + φyyt−1) + εvt (5)

◮ An estimate of the first autoregressive coefficient identifies monetary policy persistence
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Persistence

it = ρv it−1 + (φππt + φyyt)− ρv (φππt−1 + φyyt−1) + εvt (6)

◮ As before, we rely on a structural break analysis but our results are consistent with
alternative persistence measures

◮ First, we estimate

it = αi + αi,∗ {t≥t∗} + ρi it−1 + ρi,∗it−1 {t≥t∗} + γXt,t−1 + ut

using unrestricted GMM, where {t≥t∗} is an indicator variable equal to 1 if the period is
within the post-1985 era

◮ However, notice that ρv also interacts with lagged inflation and output gap in (6)

◮ To account for this, we estimate a structural break in (6) using a restricted GMM
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it = αi + αi,∗ {t≥t∗} + ρi it−1 + ρi,∗it−1 {t≥t∗} + γXt,t−1 + ut
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Summary

◮ The full NK model cannot explain the fall in inflation persistence, since it is inherited from
the monetary shock process which did not change over time

◮ It can rationalize the fall in inflation volatility through a contemporaneous fall in the
elasticity of interest rates with respect to output and inflation

Back
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Technology and Cost-push Shocks

◮ Extend the basic framework to demand (technology) and supply (cost-push) shocks, at
and ut

◮ Demand side:

ỹt = − 1

σ
(it − Etπt+1)− (1− ρa)ψyaat + Et ỹt+1 (7)

◮ Supply side:

πt = βEtπt+1 + κỹt + ut (8)

◮ at and ut follow AR(1) processes with persistence ρa and ρu
◮ Inflation dynamics follow

πt = ψπvvt + ψπaat + ψπuut
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◮ First-order autocorrelation coefficient ρ1 depends critically on the ρx ’s

ρ1 =
ρv

ψ2
πvσ

2
εv

1−ρ2
v

+ ρa
ψ2

πaσ
2
εa

1−ρ2
a
+ ρu

ψ2
πuσ

2
εu

1−ρ2
u

ψ2
πvσ

2
εv

1−ρ2
v

+
ψ2

πaσ
2
εa

1−ρ2
a
+

ψ2
πuσ

2
εu

1−ρ2
u

◮ We already documented no change in ρv
◮ Find evidence on a structural break in ρa and ρu
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Technology Shock

◮ Use three data series used in the literature

◮ Fernald (2014) estimates directly (log) technology at
◮ Francis et al. (2014) and Justiniano et al. (2011) estimate the technology shock εat

◮ Indirect estimation of ρa using the natural real interest rate process
◮ The natural real rate is given by rnt = σψya(ρa − 1)at , which can be rewritten as

rnt = ρar
n
t−1 − σψya(1− ρa)ε

a
t (9)

◮ We use the Federal Reserve estimate of the natural interest rate series, produced by Holston
(2017), as our proxy for rnt
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Cost-Push Shock
◮ Nekarda & Ramey (2010) estimate the structural time-varying price-cost markup
◮ Two different measures of the cost-push shock

◮ In the first, rely on a Cobb-Douglas production function in order to estimate the markup,
◮ In the second, rely on a CES production function, estimating labor-augmented technology

using long-run restrictions as in Gali (1999)

Back
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Optimal Monetary Policy under Discretion
◮ In the pre-1985 period, inflation dynamics follow

πt = ψπvvt + ψπaat + ψπuut

◮ In the post-1985 period with optimal policy, the central bank minimizes the welfare losses
experienced by a representative consumer,

E0

∞$

k=0

βt
%
π2
t +

κ

ε
x2t

&

where xt is the welfare-relevant output gap, subject to the Phillips curve

πt = κxt + ξt ,

where ξt ≡ βEtπt+1 + ut is treated as a non-policy shock
◮ Inflation dynamics follow

πt = ρuπt−1 + ψdε
u
t

where ψd > 0 depends on deep parameters and inflation persistence is inherited from the
cost-push shock.
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◮ Compared to the pre-1985 dynamics there is no significant change in inflation persistence:
◮ in the pre-period, model persistence is around 0.95,
◮ while in the post-period persistence is around 0.96, the estimated persistence of cost-push

shocks throughout both periods.

◮ Therefore, such change in the policy stance would have generated an increase in inflation
persistence, which rules out this explanation.

Back
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Optimal Monetary Policy under Commitment
◮ In the pre-1985 period, inflation dynamics follow

πt = ψπvvt + ψπaat + ψπuut

◮ In the post-1985 period with optimal policy, the central bank minimizes the welfare losses
experienced by a representative consumer,

E0

∞$

k=0

βt
%
π2
t +

κ

ε
x2t

&

where xt is the welfare-relevant output gap, subject to the Phillips curve

πt = βEtπt+1 + κxt + ut

◮ Inflation dynamics follow

πt = ρcπt−1 + ψc∆ut

where ψc > 0 depends on deep parameters and ρc governs inflation persistence, which
depends on deep parameters.
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◮ Standard parameterization yields ρc = 0.31, excessive fall in inflation persistence

◮ Commitment implies an as if Taylor rule in which φπ rose from 1 to 6.5, inconsistent with
our empirical evidence.

◮ Output gap as persistent as inflation!

Back
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Price Indexation

◮ Changes in φπ and φy have no effect on inflation persistence unless there is aggregate
anchoring

◮ Generate aggregate anchoring through price indexation

◮ A restricted firm resets its price partially indexed to past inflation: pit = pi,t−1 + ωπt−1

◮ Otherwise standard

◮ Phillips curve modified to

∆t = κỹt + βEt∆t+1,

where ∆t := πt − ωπt−1

◮ Inflation dynamics given by
πt = ρωπt−1 + ψωvt

where ρω is decreasing in φπ

Back

42 / 18



Trend Inflation
◮ Ascari & Sbordone (2014) and Stock & Watson (2007) document a fall in trend inflation

from 4% in the pre-1985 period to 2% afterwards

◮ Log-linearize the model around a steady-state with positive trend inflation

◮ Creates intrinsic persistence through relative price dispersion, which is a backward-looking
variable that has no first-order effects in the benchmark

◮ Demand side unaffected, Supply side (Phillips curve) now a system of three equations

πt = Ξ1ψt + Ξ2yt + Ξ3Etψt+1 + Ξ4Etπt+1

ψt = Γ1st + Γ2yt + Γ3Etψt+1 + Γ4Etπt+1

st = Λ1πt + Λ2st−1

◮ Λ2(π) increasing in π

◮ Inflation dynamics given by
πt = ρππt−1 + ψπvt + ξt ,

where ξt is an MA(∞) process and ρπ is decreasing in φπ and φy , and increasing in π

Back
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Regression Design
◮ The previous regression design is motivated by the Kalman filter
◮ Suppose that an agent wants to forecast an unobserved fundamental vt ,

vt = ρvvt−1 + εvt

where εv ∼ N (0,σ2
ε)

◮ Instead of observing the fundamental, agents observe a noisy signal

xit = vt + uit

with ui ∼ N (0,σ2
u)

◮ An agent optimal expectation (Kalman filter) takes the following form

Etvt = (1− G )Et−1vt + Gxit

where G is the Kalman gain, the weight that agents (optimally) assign on new information
xit relative to the previous forecast, which depends on σ2

ε and σ2
u

◮ One can show

vt+1 − Etvt+1 =
1− G

G
(Etvt+1 − Et−1vt+1) + ut

◮ Hence, an estimate of β pins down information frictions!
Back
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Rolling Sample Back
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Time-Varying Parameter Regression Back

πt+3,t − Etπt+3,t = βt(Etπt+3,t − Et−1πt+3,t) + ut

Back
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Livingston Survey Back

◮ Survey conducted semiannually, estimate the following structural-break variant

πt+2,t − Etπt+2,t = αCG +
!
βCG + βCG∗ {t≥t∗}

"
(Etπt+2,t − Et−2πt+2,t) + ut (10)

Table: Regression table

(1) (2)
CG Regression Structural Break

Revision 0.380∗ 0.412∗∗

(0.202) (0.204)

Revision× {t≥t∗} -0.880∗∗

(0.414)

Constant -0.183∗ -0.105
(0.102) (0.119)

Observations 146 146

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Derivation Phillips curve
◮ Continuum of firms indexed by j ∈ If = [0, 1]

◮ Each firm is a monopolist producing a differentiated intermediate-good variety, producing
output Yjt and setting nominal price Pjt and making real profit Djt

◮ Production function
Yjt = N1−α

jt (11)

◮ Firm j ’s program

P∗
jt = argmax

Pjt

∞$

k=0

θkEjt

'
Λt,t+k

1

Pt+k

(
PjtYj,t+k|t − Ct+k(Yj,t+j|t)

)*

s.t. Yj,t+k|t =

+
Pjt

Pt+k

,−ε

Ct+k

where

◮ Λt,t+k ≡ βk
"

Ct+k

Ct

#−σ

is the stochastic discount factor,

◮ Ct(·) is the (nominal) cost function,
◮ Yj,t+k|t denotes output in period t + k for a firm j that last reset its price in period t.
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◮ FOC
∞$

k=0

θkEjt

-
Λt,t+kYj,t+k|t

1

Pt+k

!
P∗
jt −MΨj,t+k|t

".
= 0

where
◮ Ψj,t+k|t ≡ C′

t+k(Yj,t+j|t) denotes the (nominal) marginal cost for firm j ,
◮ M = ε

ε−1
.

◮ Log-linearizing around the zero inflation steady-state, we obtain the familiar price-setting
rule

p∗jt = (1− βθ)
∞$

k=0

(βθ)kEjt

!
ψj,t+k|t + µ

"
(12)

where
◮ ψj,t+k|t = logΨj,t+k|t
◮ µ = logM.

49 / 18



◮ The (log) marginal cost for firm j at time t + k |t is

ψj,t+k|t = wt+k −mpnj,t+k|t

= wt+k − [log(1− α)− αnj,t+k|t ]

where
◮ mpnj,t+k|t denotes (log) marginal product of labor for a firm that last reset its price at time t,
◮ nj,t+k|t denotes (log) employment in period t + k for a firm that last reset its price at time t

◮ Let ψt ≡
/
If
ψjt denote the (log) average marginal cost

ψt = wt − [log(1− α)− αnt ]

◮ The following relation holds

ψj,t+k|t = ψt+k + α(njt+k|t − nt+k)

= ψt+k +
α

1− α
(yjt+k|t − yt+k)

= ψt+k −
αε

1− α
(p∗jt − pt+k) (13)
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◮ Introducing (13) into (12), we can rewrite the firm price-setting condition as

p∗jt = (1− βθ)
∞$

k=0

(βθ)kEjt (pt+k −Θµ̂t+k)

where
◮ µ̂ = µt − µ is the deviation between the average and desired markups,
◮ µt = −(ψt − pt),
◮ Θ = 1−α

1−α+αε

◮ Suppose that firms observe the aggregate prices up to period t − 1, pt−1

◮ Then we can restate the above condition as

p∗jt − pt−1 = −(1− βθ)Θ
∞$

k=0

(βθ)kEjt µ̂t+k +
∞$

k=0

(βθ)kEjtπt+k

◮ Define the firm-specific inflation rate as πjt = (1− θ)(p∗jt − pt−1)
◮ Then we can write the above expression as

πjt = −(1− θ)(1− βθ)ΘEjt µ̂t + (1− θ)Ejtπt + βθEjtπj,t+1

where πt =
/
If
πjt dj .
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◮ Using the aggregate household’s labor supply condition we can write

µ̂t = −
+
σ +

ϕ+ α

1− α

,
ỹt

◮ Finally, we can write the individual Phillips curve as

πjt = (1− θ)(1− βθ)Θ

+
σ +

ϕ+ α

1− α

,
Ejt ỹt + (1− θ)Ejtπt + βθEjtπi,t+1

= κθEjt ỹt + (1− θ)Ejtπt + βθEjtπi,t+1 (14)

where κ = (1−θ)(1−βθ)
θ Θ

%
σ + ϕ+α

1−α

&
, and the aggregate Phillips curve can be written as

πt = κθ

∞$

k=0

(βθ)kEf

t ỹt+k + (1− θ)
∞$

k=0

(βθ)kEf

tπt+k (15)
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Parameter Values

Parameter Description Value Source/Target
σ IES 1 Gaĺı (2015)
β Discount factor 0.99 Gaĺı (2015)
ϕ Inv. Frisch Elas. 5 Gaĺı (2015)
1− α Labor share 0.75 Gaĺı (2015)
θ Calvo lottery 0.75 Gaĺı (2015)
ε Elas. Subs. between goods 9 Gaĺı (2015)
ρv Monetary shock process persistence 0.94 Estimated
φy Output coefficient Taylor rule 0.5 Estimated
φπ,pre Inflation coefficient Taylor rule pre-1985 1 Estimated
φπ,post Inflation coefficient Taylor rule post-1985 2 Estimated
σ2
u,pre Signal innovation variance pre-1985 0.445 βCG ,pre in Estimated

σ2
u,post Signal innovation variance post-1985 0.095 βCG ,post in Estimated
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Optimal expectations
◮ Aggregate inflation persistence depends on individual expectation’s anchoring
◮ Guessing (and verifying) dynamics for ỹt and πt , we can rewrite the firm problem as

πjt = −
1 + ρvχ

+
ψπ +

σψy

1− ϑ
ρv

,

σ + φy
κθEjtvt +

-
1− θ − κθ

φπ − ϑ

σ(1− ϑ) + φy

.
Ejtπt + βθEjtπj,t+1

Proposition 4

Firm i’s nowcast of the monetary policy shock process is

Eitvt = Ei,t−1vt + G (xit − Ei,t−1vt) (16)

where the Kalman gain is given by G (ρ,σε,σu) = 1− λ
ρ . Firm i’s expectations of current

aggregate output and individual future inflation as

Eitπt = Ei,t−1πt + G1(xit − Ei,t−1vt)

Eitπi,t+1 = Ei,t−1πi,t+1 + G2(xit − Ei,t−1vt)

where Gk(β,σ, θ,κ,φπ,φy , ρ,σε,σu) for k = {1, 2}, satisfying G1 < G2 < G.
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Optimal expectations

◮ Exogenous variable forecast: expectations will only update by a factor G ∈ (0, 1), a firm
does not need to infer others’ decision
◮ agents only need to rely on their private information, since others’ actions do not determine

the forecasted variable

◮ Forecasts of endogenous variables depend on others’ actions, giving rise to higher-order
beliefs
◮ degree of anchoring is higher at each belief order
◮ larger anchoring in expectations of endogenous aggregates

Back
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Table: Regression table

(1) (2) (3)
NKPC Break Output Break

Eft ỹt+2,t 1.014∗∗∗ 1.402∗∗∗ 1.079∗∗

(0.262) (0.438) (0.418)

Eft ỹt+4,t+2 -0.0717 -0.680 -0.354

(0.335) (0.553) (0.533)

Eft πt+2,t -0.0552 -0.0352 -0.264∗∗∗

(0.0652) (0.0602) (0.0836)

Eft πt+4,t+2 -0.0375 -0.123 0.237

(0.151) (0.147) (0.180)

Eft ỹt+2,t× {t≥t∗} -0.892∗ -0.598

(0.526) (0.509)

Eft ỹt+4,t+2× {t≥t∗} 0.882 0.555

(0.662) (0.641)

Eft πt+2,t× {t≥t∗} 0.303∗∗∗

(0.0955)

Eft πt+4,t+2× {t≥t∗} -0.486∗∗

(0.191)

Constant -0.115 0.388 0.479
(0.250) (0.398) (0.460)

Observations 99 99 99

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Proposition 5 ( Back )

In the dispersed information framework, equilibrium output gap and inflation dynamics are
given by

ỹt = − ϑ(φπ − ϑ)

σ(1− ϑ) + φy
πt−1 − ψy

χ(ϑ)

1− ϑ/ρ
vt

πt = ϑπt−1 − ψπχ(ϑ)vt

where

χ(ϑ) =

0

11−
κσϑ(φπ−ϑ)
σ(1−ϑ)+φy

(1− ρβ)[σ(1− ρ) + φy ] + κ(φπ − ρ) + κσϑ(φπ−ϑ)
σ(1−ϑ)+φy

2

3
+
1− ϑ

ρ

,
∈ (0, 1)

and ϑ is a scalar that is given by the reciprocal of the largest root of the following cubic

P(z) = (βθ − z)(z − ρ−1)(z − ρ)− σ2
ε

ρσ2
u

zθ

-
β − z

+
1 +

κ(φπ − ϑ)

σ(1− ϑ) + φy

,.
(17)
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Proposition 6 ( Back )

The ad-hoc hybrid dynamics (??) produces identical dynamics to the dispersed information model if

B −ϕ = ωf δ(AB + ρB)

ωb = (I2 − ωf δA)A

for certain matrices ωb and ωf

ωb =

!
ωb,11 ωb,12

ωb,21 ωb,22

"
and ωf =

!
ωf ,11 ωf ,12

ωf ,21 ωf ,22

"

where

A =

#
0 − ϑ(φπ−ϑ)

σ(1−ϑ)+φy

0 ϑ

$
and B =

#
−ψy

−ψπ

%
1− ϑ

ρ

&
$
χ(ϑ)
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Corollary 1 ( Back )

The as if DIS and Phillips curve dynamics are described by

ỹt =
ωyπ

σ
πt−1 −

1

σ
Et rt +

δyy

σ
Et ỹt+1 +

δyπ − 1

σ
Etπt+1

πt = ωπππt−1 + κyt + δπyEt ỹt+1 + δππβEtπt+1

where

ωyπ = (σ + φy )ωb,12 + φπωb,22

ωππ = ωb,22 − κωb,12

δyy =
σ

σ + φy + κφπ

'
(σ + φy )(ωf ,11 + κωf ,12) + φπ(ωf ,21 + κωf ,22)

(

δyπ =
1

σ + φy + κφπ

)
(1− βφπ)[(σ + φy )ωf ,11 + φπωf ,21] + (κ+ βσ + βφy )[(σ + φy )ωf ,12 + φπωf ,22)]

*

δπy =
σ

σ + φy + κφπ

'
(ωf ,21 − κωf ,11) + κ

+
ωf ,22 − κωf ,12

,(

δππ =
1

σ + φy + κφπ

)
(1− βφπ)(ωf ,21 − κωf ,11) + [κ+ β(σ + φy )]

+
ωf ,22 − κωf ,12

,*
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