Inflation Persistence, Noisy Information and the Phillips Curve

José-Elías Gallegos

August 26, 2021

This project

- 1. Document a fall in inflation persistence and volatility since the mid 1980s
- 2. Show that the NK model cannot explain the fall in persistence
- 3. Document a change in information frictions in the mid 1980s
- 4. Build a noisy information framework
- 5. Implications on the (lack of) flattening in the Phillips curve

Inflation dynamics have changed since the mid 1980s

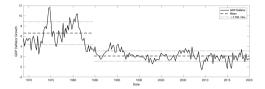


Figure: Time series of inflation, with subsample mean and standard deviation.

	1968:Q4-2020:Q1	1968:Q4-1984:Q4	1985:Q1-2020:Q1
Mean	3.362	6.160	2.117
Volatility	2.400	2.234	1.016
First-Order Autocorrelation	0.880	0.754	0.505

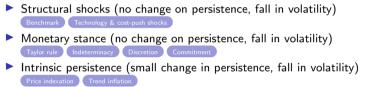
Table 1: Summary statistics over time		Table	1:	Summary	statistics	over	time
---------------------------------------	--	-------	----	---------	------------	------	------

Inflation dynamics in NK models

Inflation dynamics in NK models

Understand the change in inflation dynamics via structural framework

- Determinants of inflation persistence and volatility
- Study 3 causal explanations: changes in...



- ▶ NK framework (extended in several dimensions) cannot explain the change in persistence
- Propose a noisy information environment

Noisy Information

Motivation for Noisy Information

Federal Reserve disclosure policy over time

- ▶ Before 1967: Fed policy decisions announced once a year in the Annual Report
- ▶ 1967: release the directive in the Policy Report (PR) 90 days after the decision
- ▶ 1976: enlarged the PR and reduced delay to 45 days
- 1977-1993: objectives, 'tilt', ranking of policy factors, minutes
- ▶ 1994: immediate release of PR if action
- ▶ 1999: immediate release of tilt
- 2000: immediate announcement after each meeting
- Quantify this increase in information using the Coibion & Gorodnickenko (AER 2015) regression design

Empirical Evidence on Dispersed Information

- Expectation data from the Survey of Professional Forecasters
 - ▶ Forecasters are asked to report their nowcast, forecast of next quarter, ..., up until a year
 - Quarterly, 1968:IV-2020:I
 - Alleviates the concern that firms could figure out Fed actions by hiring market watchers
- Measure of belief formation frictions: Coibion & Gorodnickenko (AER 2015) underrevision
 - **•** Define $\pi_{t+3,t} = \frac{Deflator_{t+3} Deflator_{t-1}}{Deflator_{t-1}}$
 - **b** Denote individual *i*'s forecast made in period t of annual inflation as $\mathbb{E}_{it}\pi_{t+3,t}$
 - Denote average forecast as $\overline{\mathbb{E}}_t \pi_{t+3,t} = \frac{1}{N_t} \sum_{i=1,...,N_t} \mathbb{E}_{it} \pi_{t+3,t}$

Structural break version of CG

$$\pi_{t+3,t} - \mathbb{E}_t \pi_{t+3,t} = \alpha + (\beta + \beta_{*,\mathbb{1}_{\{t \ge t^*\}}}) \left(\mathbb{E}_t \pi_{t+3,t} - \mathbb{E}_{t-1} \pi_{t+3,t} \right) + u_t$$

Table: Regression table

	(1)	(2)	(3)	(4)
	CG Regression	1968:IV-1984:IV	1985:I-2020:I	Structural Break
Revision	1.230***	1.414***	0.169	1.501***
	(0.250)	(0.283)	(0.193)	(0.317)
$Revision \times \mathbbm{1}_{\{t \geq t^*\}}$				-1.111*** (0.379)
Constant	-0.0875	0.271	-0.317***	-0.135*
	(0.0696)	(0.185)	(0.0478)	(0.0690)
Observations	197	58	139	197

HAC robust standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Noisy Information NK model

- Assumptions:
 - $1. \ \mbox{Households}$ and the Central bank have \mbox{FIRE}
 - 2. Firms have RE but cannot observe the state of the economy
 - Monetary policy shock v_t is the only aggregate state variable
 - Each firm j observes noisy signal x_{jt} on the CB action v_t ,

$$x_{jt} = v_t + u_{jt}, \quad \text{with } u_{jt} \sim \mathcal{N}(0, \sigma_u^2)$$

Model equations:

$$\begin{split} \tilde{y}_t &= -\frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1}) + \mathbb{E}_t \tilde{y}_{t+1} \\ \pi_{jt} &= \kappa \theta \mathbb{E}_{jt} \tilde{y}_t + (1 - \theta) \mathbb{E}_{jt} \pi_t + \beta \theta \mathbb{E}_{jt} \pi_{j,t+1}, \quad \pi_t = \int \pi_{jt} \, dj \\ i_t &= \phi_\pi \pi_t + \phi_y \tilde{y}_t + v_t, \qquad v_t = \rho_v v_{t-1} + \varepsilon_t^v, \qquad \varepsilon_t^v \sim \mathcal{N}(0, \sigma_\varepsilon^2) \end{split}$$

Optimal Expectations Parameters

• Model the increase in information disclosure as a decrease in σ_u (structural break)

Inflation dynamics in the NINK model

Proposition 1 (Full Proposition)

In the dispersed information framework, equilibrium inflation dynamics are given by

$$\pi_t = \vartheta \pi_{t-1} - \psi_\pi \chi(\vartheta) v_t$$

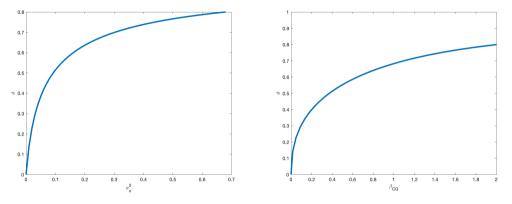
where $\vartheta(\sigma_u, \phi_\pi) \in (0, \rho_v)$ governs information frictions, and in the limit of no info frictions $(\sigma_u \to 0), \ \vartheta \to 0$ and $\chi \to 1$

Proposition 2

The theoretical counterpart of the coefficient β_{CG} is given by

$$\beta_{\mathcal{CG}} = \frac{\lambda^2 \{ (1-\lambda^2) \vartheta^2 (1-\rho\vartheta) + [\rho(\vartheta-\lambda) - \vartheta\lambda(1-\rho\lambda)](1-\vartheta\lambda) \}}{(\rho-\lambda)(\vartheta-\lambda)(1-\vartheta\lambda)}$$

where $\lambda =
ho(1-G) \in (0,1)$



(a) Inflation persistence increasing in noise

(b) Inflation persistence increasing in CG coefficient

Persistence Result

• Calibration to match β_{CG} :

	Pre-1985	Post-1985
ϕ_{π}	1	2
σ_u	$eta_{\mathcal{CG}}=1.501$	$eta_{\mathcal{CG}}=$ 0.390

The model produces a fall in inflation persistence: from ϑ_{pre} = 0.739 to ϑ_{post} = 0.444
 Data: ρ_{π,pre} = 0.814 and ρ_{π,post} = 0.491

	(1) OLS	(2) Newey			
π_{t-1}	0.814*** (0.0481)	0.814*** (0.0483)			
$\pi_{t-1} \times \mathbb{1}_{\{t \geq t^*\}}$	-0.323*** (0.0807)	-0.323*** (0.0804)			
Observations	207	207			
Standard errors in parentheses * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$					

"Inflation Disconnect" Puzzle and (lack of) flattening of Phillips Curve

"Inflation Disconnect" Puzzle

Fall in the sensitivity of inflation wrt other (real) variables (DelNegro et al. 2020)

Most well-known inflation dynamics in the NKPC

$$\pi_t = \kappa \tilde{y}_t + \beta \mathbb{E}_t \pi_{t+1}$$

• Inflation only related to output through the slope κ

- Literature has extensively focused on showing that κ has flattened
- Inflation independent of any other (real) variable
- \blacktriangleright Show the "inflation disconnect" puzzle without resorting to κ
- Two tests
 - Agnostic stance in expectations
 - Using our NI framework disconnect occurs via expectation formation changes

Test 1: Agnostic stance

 Recall the individual Phillips curve for firm j

$$\pi_{jt} = \kappa \theta \mathbb{E}_{jt} \tilde{y}_t + (1 - \theta) \mathbb{E}_{jt} \pi_t + \beta \theta \mathbb{E}_{jt} \pi_{j,t+1}$$

Iterating forward and aggregating, we can write

$$\pi_t = \kappa \theta \sum_{k=0}^{\infty} (\beta \theta)^k \overline{\mathbb{E}}_t^f \tilde{y}_{t+k} + (1-\theta) \sum_{k=0}^{\infty} (\beta \theta)^k \overline{\mathbb{E}}_t^f \pi_{t+k}$$

- Inflation related to output via κ and general expectations
- Test structural break in κ controlling for non-standard expectations Livingston

Table: Regression table

	(1)	(2)	(3)
	NKPC	Break Output	Break
$\overline{\mathbb{E}}_t^f \tilde{y}_t$	0.108***	0.0781*	0.0810*
	(0.0330)	(0.0451)	(0.0459)
$\overline{\mathbb{E}}_t^f \tilde{y}_{t+4}$	0.290 ^{***}	0.316 ^{***}	0.215 ^{**}
	(0.0707)	(0.0793)	(0.0931)
$\overline{\mathbb{E}}_t^f \pi_t$	1.252 ^{***}	1.214 ^{***}	1.205 ^{***}
	(0.0906)	(0.0963)	(0.119)
$\overline{\mathbb{E}}_{t}^{f}\pi_{t+4}$	-0.327***	-0.308***	-0.256**
	(0.100)	(0.104)	(0.125)
$\overline{\mathbb{E}}_t^f \tilde{y}_t \times \mathbb{1}_{\{t \ge t^*\}}$		0.0775 (0.0596)	0.0885 (0.0593)
$\overline{\mathbb{E}}_{t}^{f}\tilde{y}_{t+4}\times\mathbb{1}\left\{ t\geq t^{\ast}\right\}$		-0.0846 (0.0858)	0.0990 (0.109)
$\overline{\mathbb{E}}_{t}^{f}\pi_{t}\times\mathbb{1}\left\{ t\geq t^{\ast}\right\}$			0.0305 (0.177)
$\overline{\mathbb{E}}_t^f \pi_{t+4} \times \mathbb{1}_{\{t \ge t^*\}}$			-0.262 (0.173)
Constant	-0.233***	-0.210**	-0.160
	(0.0581)	(0.102)	(0.0969)

HAC robust standard errors in parentheses

Test 2: NI Phillips Curve

Proposition 3 (

Anchoring, myopia and relevance of future output gaps

The as if Phillips curve dynamics are described by

$$\pi_t = \omega_{\pi\pi} \pi_{t-1} + \kappa \tilde{y}_t + \delta_{\pi y} \mathbb{E}_t \tilde{y}_{t+1} + \delta_{\pi\pi} \beta \mathbb{E}_t \pi_{t+1}$$

Red terms endogenous to σ_u

• Model implied dynamics in the pre-1985 period $(\phi_{\pi}, \beta_{CG}) = (1, 1.50)$ $\pi_t = 0.562\pi_{t-1} + 0.172\tilde{y}_t + 0.000\mathbb{E}_t\tilde{y}_{t+1} + 0.405\mathbb{E}_t\pi_{t+1}$

► Model implied dynamics in the pre-1985 period $(\phi_{\pi}, \beta_{CG}) = (2, 0.39)$ $\pi_t = 0.399\pi_{t-1} + 0.172\tilde{y}_t - 0.114\mathbb{E}_t\tilde{y}_{t+1} + 0.633\mathbb{E}_t\pi_{t+1}$

Suppose an econometrician assumes $\tilde{y}_t \sim AR(1)$: $0.172\tilde{y}_t - 0.114\mathbb{E}_t \tilde{y}_{t+1} = (0.172 - 0.114\rho_y)\tilde{y}_t$

	(1) Standard NKPC	(2) Break	(3) DI NKPC	(4) Break Output	(5) Break Inflation
Ϋt	-0.0261 (0.0236)	-0.114** (0.0452)	0.192** (0.0941)	0.273* (0.142)	0.265** (0.112)
π_{t+1}	0.991*** (0.0175)	0.996 ^{***} (0.0171)	0.677*** (0.0740)	0.646*** (0.0876)	0.499*** (0.104)
π_{t-1}			0.309*** (0.0743)	0.340*** (0.0873)	0.481*** (0.102)
\tilde{y}_{t+1}			-0.221 ^{**} (0.104)	-0.307** (0.142)	-0.272 ^{**} (0.120)
$\tilde{y}_t \times \mathbb{1} \{t \ge t^*\}$		0.122** (0.0566)		-0.183 (0.198)	
$\tilde{y}_{t+1} \times \mathbb{1}_{\{t \geq t^*\}}$				0.191 (0.196)	
$\pi_{t-1} \times \mathbb{1}_{\{t \geq t^*\}}$					-0.366* (0.200)
$\pi_{t+1} \times \mathbb{1}_{\{t \geq t^*\}}$					0.406* (0.209)
Observations	203	203	203	203	203

Table: Regression table

* p < 0.10, ** p < 0.05, *** p < 0.01

Backup Slides

Structural Break Back

▶ Wald test positive about a structural break in 1985:Q1

Regress

	(1)	(2)	(3)	(4)	(5)	(6)
	Def	lator	C	PI	Р	CE
π_{t-1}	0.880*** (0.0466)	0.785*** (0.0755)	0.738*** (0.0628)	0.793*** (0.0827)	0.816*** (0.0461)	0.837*** (0.0672)
$\pi_{t-1} \times \mathbb{1}_{\{t \geq t^*\}}$		-0.287** (0.144)		-0.497*** (0.143)		-0.434*** (0.117)
Constant	0.400** (0.166)	1.320*** (0.471)	1.008*** (0.262)	1.396** (0.542)	0.618*** (0.182)	0.990** (0.431)
$Constant \times \mathbb{1}_{\{t \geq t^*\}}$		-0.263 (0.543)		0.370 (0.607)		0.283 (0.477)
Observations	206	206	206	206	206	206

 $\pi_t = \alpha_{\pi} + \alpha_{\pi,*} \mathbbm{1}_{\{t \ge t^*\}} + \rho_{\pi} \pi_{t-1} + \rho_{\pi,*} \pi_{t-1} \mathbbm{1}_{\{t \ge t^*\}} + \varepsilon_t$

Standard errors in parentheses

Autocorrelation Function (Back)

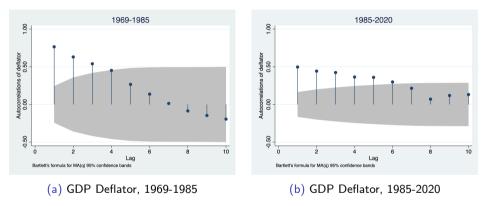


Figure: Autocorrelation function of GDP Deflator

Autocorrelation Function (Back)

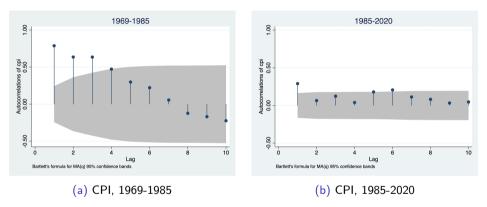


Figure: Autocorrelation function of CPI

Autocorrelation Function (Back)



Figure: Autocorrelation function of PCE

Rolling-Sample Regression **Back**

• Regress $\pi_t = \rho_{\pi} \pi_{t-1} + \varepsilon_t$ using 14-year window samples

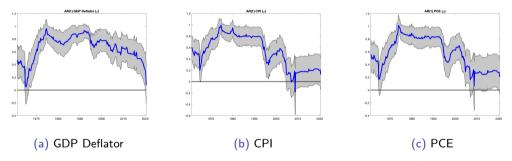


Figure: First-order autocorrelation of GDP Deflator, CPI and PCE, rolling sample

Unit Root Test Back

- Cross-sample unit root analysis
 - Augmented Dickie-Fuller
 - Phillips-Perron
- ▶ Null hypothesis (unit root) cannot be rejected in the pre-1985 sample
- Strong rejection of the null in the post-1985 sample

p-values, null = series has unit root					
	1969-2020				
Variable	ADF	Phillips-Perron			
GDP Deflator	0.23	0.02			
CPI	0.11	0.00			
PCE	0.16	0.00			
1969-1985					
Variable	ADF	Phillips-Perron			
GDP Deflator	0.15	0.07			
CPI	0.17	0.09			
PCE	0.055	0.09			
	1985-2020				
Variable	ADF	Phillips-Perron			
GDP Deflator	0.07	0.00			
CPI	0.00	0.00			
PCE	0.01	0.00			

Time-Varying Parameter Regression

Consider the framework

$$\pi_t = \rho_t \pi_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

Persistence coefficient follows a random walk

$$\rho_{t+1} = \rho_t + u_t, \quad u_t \sim \mathcal{N}(0, \Sigma_u)$$

Bayesian estimation, prior selection is standard following Nakajima (2011)

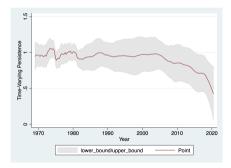


Figure: Persistence over time

Structural Break Back

Table: Regression table

GMM regression on		(1) 1969:IV-2020:I	(2) Break
$i_t = (\phi_{\pi} + \phi_{\pi,*} \mathbb{1}_{\{t \ge t^*\}}) \pi_t + \phi_y y_t + \varepsilon_t$ Instruments: four lags of	π_t	1.154*** (0.112)	1.323*** (0.140)
 effective Fed funds rate GDP deflator CBO output gap 	Уt	0.353*** (0.121)	0.309** (0.128)
 commodity price inflation real M2 growth spread between long-term bond rate 	$\pi_t \times \mathbb{1}_{\{t \geq t^*\}}$		0.958*** (0.284)
and 3-month Treasury Bill	Observations	204	204
	Standard arrors	n naranthasas	

Standard errors in parentheses.

* ho < 0.10, ** ho < 0.05, *** ho < 0.01

Benchmark

Dynamic IS curve

$$\tilde{y}_t = -\frac{1}{\sigma} \left(i_t - \mathbb{E}_t \pi_{t+1} \right) + \mathbb{E}_t \tilde{y}_{t+1} \tag{1}$$

NK Phillips curve

$$\pi_t = \kappa \tilde{y}_t + \beta \mathbb{E}_t \pi_{t+1} \tag{2}$$

Monetary policy rule

$$i_t = \phi_\pi \pi_t + \phi_y y_t + v_t, \qquad v_t = \rho_v v_{t-1} + \varepsilon_t^v, \qquad \varepsilon_t^v \sim \mathcal{N}(0, \sigma_\varepsilon^2)$$
(3)

- Introducing (3) into (1), we can write (1)-(2) as a system of two first-order forward-looking stochastic equations
- Inflation dynamics are given by

$$\pi_t = -\psi_\pi v_t$$

= $\rho_v \pi_{t-1} - \psi_\pi \varepsilon_t^v$ (4)

where ψ_{π} is decreasing in ϕ_{π}

Measuring the Shock Process

- Problem: v_t is unobservable, but we have estimates on monetary policy shocks ε^v_t from Romer and Romer (2004), updated until 2007 by Wieland & Yang (2020)
- ▶ Solution: indirect estimation on ρ_v
- Using the AR(1) property of the v_t shock process, we can write the Taylor rule as

$$i_{t} = \rho_{v}i_{t-1} + (\phi_{\pi}\pi_{t} + \phi_{y}y_{t}) - \rho_{v}(\phi_{\pi}\pi_{t-1} + \phi_{y}y_{t-1}) + \varepsilon_{t}^{v}$$
(5)

An estimate of the first autoregressive coefficient identifies monetary policy persistence

Persistence

$$i_{t} = \rho_{v}i_{t-1} + (\phi_{\pi}\pi_{t} + \phi_{y}y_{t}) - \rho_{v}(\phi_{\pi}\pi_{t-1} + \phi_{y}y_{t-1}) + \varepsilon_{t}^{v}$$
(6)

- As before, we rely on a structural break analysis but our results are consistent with alternative persistence measures
- First, we estimate

$$i_{t} = \alpha_{i} + \alpha_{i,*} \mathbb{1}_{\{t \ge t^{*}\}} + \rho_{i} i_{t-1} + \rho_{i,*} i_{t-1} \mathbb{1}_{\{t \ge t^{*}\}} + \gamma X_{t,t-1} + u_{t}$$

using unrestricted GMM, where $\mathbb{1}_{\{t \ge t^*\}}$ is an indicator variable equal to 1 if the period is within the post-1985 era

- However, notice that ρ_v also interacts with lagged inflation and output gap in (6)
- ▶ To account for this, we estimate a structural break in (6) using a restricted GMM

$$i_{t} = \alpha_{i} + \alpha_{i,*} \mathbb{1}_{\{t \ge t^{*}\}} + \rho_{i} i_{t-1} + \rho_{i,*} i_{t-1} \mathbb{1}_{\{t \ge t^{*}\}} + \gamma \mathbf{X}_{t,t-1} + u_{t}$$

	(1)	(2)	(3)	(4)
	Unrestricte	d GMM	Restricted	I GMM
i_{t-1}	0.941^{***}	0.939***	0.972^{***}	0.931***
	(0.0184)	(0.0448)	(0.0119)	(0.0365)
$i_{t-1} \times \mathbb{1}_{\{t > t^*\}}$		-0.00261		-0.0537
()		(0.0591)		(0.0632)
Constant	0.122	0.305	0.0770^{*}	0.851^{**}
	(0.118)	(0.473)	(0.0467)	(0.373)
$Constant \times \mathbb{1}_{\{t > t^*\}}$		-0.123		-0.813
(-=-)		(0.436)		(0.559)
Observations	203	203	203	203

* p < 0.10, ** p < 0.05, *** p < 0.01

Summary

- The full NK model cannot explain the fall in inflation persistence, since it is inherited from the monetary shock process which did not change over time
- It can rationalize the fall in inflation volatility through a contemporaneous fall in the elasticity of interest rates with respect to output and inflation

Back

Technology and Cost-push Shocks

- \blacktriangleright Extend the basic framework to demand (technology) and supply (cost-push) shocks, a_t and u_t
- Demand side:

$$\tilde{y}_t = -\frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1}) - (1 - \rho_a) \psi_{ya} a_t + \mathbb{E}_t \tilde{y}_{t+1}$$
(7)

Supply side:

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa \tilde{y}_t + u_t \tag{8}$$

- \blacktriangleright at and u_t follow AR(1) processes with persistence ρ_a and ρ_u
 - Inflation dynamics follow

$$\pi_t = \psi_{\pi v} v_t + \psi_{\pi a} a_t + \psi_{\pi u} u_t$$

First-order autocorrelation coefficient ρ_1 depends critically on the ρ_x 's

$$\rho_{1} = \frac{\rho_{v} \frac{\psi_{\pi v}^{2} \sigma_{\varepsilon v}^{2}}{1 - \rho_{v}^{2}} + \rho_{a} \frac{\psi_{\pi a}^{2} \sigma_{\varepsilon a}^{2}}{1 - \rho_{a}^{2}} + \rho_{u} \frac{\psi_{\pi u}^{2} \sigma_{\varepsilon u}^{2}}{1 - \rho_{u}^{2}}}{\frac{\psi_{\pi v}^{2} \sigma_{\varepsilon v}^{2}}{1 - \rho_{v}^{2}} + \frac{\psi_{\pi a}^{2} \sigma_{\varepsilon a}^{2}}{1 - \rho_{a}^{2}} + \frac{\psi_{\pi u}^{2} \sigma_{\varepsilon u}^{2}}{1 - \rho_{u}^{2}}}$$

- \blacktriangleright We already documented no change in ρ_v
- Find evidence on a structural break in ρ_a and ρ_u

Technology Shock

- Use three data series used in the literature
- Fernald (2014) estimates directly (log) technology a_t
- Francis et al. (2014) and Justiniano et al. (2011) estimate the technology shock ε_t^a
 - Indirect estimation of ρ_a using the natural real interest rate process
 - ▶ The natural real rate is given by $r_t^n = \sigma \psi_{ya}(\rho_a 1)a_t$, which can be rewritten as

$$r_t^n = \rho_a r_{t-1}^n - \sigma \psi_{ya} (1 - \rho_a) \varepsilon_t^a$$
(9)

We use the Federal Reserve estimate of the natural interest rate series, produced by Holston (2017), as our proxy for r_tⁿ

Constant	(0.00327)	(0.00145)	(0.0968)	(0.102)	(0.114)	(0.123)
Constant	0.00360	0.00743^{*}	0.128	0.162	0.0878	0.123
Technology shock in Justiniano et al. (2011)					0.0191 (0.0278)	0.0195 (0.0280)
Natural $rate_{t-1}$ change				-0.0106 (0.0129)		-0.00863 (0.0141)
Technology shock in Francis et al. (2014)			0.0511^{**} (0.0234)	0.0514^{**} (0.0237)		
Natural $rate_{t-1}$			0.951^{***} (0.0317)	0.945^{***} (0.0327)	0.963^{***} (0.0367)	0.957^{**} (0.0404)
(Log) TFP_{t-1} change		0.00323 (0.00339)				
(Log) TFP_{t-1}	0.998^{***} (0.00454)	0.990^{***} (0.00860)				
	(1) Technology	(2) SB	(3) Natural rate	$^{(4)}_{SB}$	(5) Natural rate	(6) SB

* p < 0.10,** p < 0.05,*** p < 0.01

Cost-Push Shock

- ▶ Nekarda & Ramey (2010) estimate the structural time-varying price-cost markup
- Two different measures of the cost-push shock
 - ▶ In the first, rely on a Cobb-Douglas production function in order to estimate the markup,
 - In the second, rely on a CES production function, estimating labor-augmented technology using long-run restrictions as in Gali (1999)

	(1)	(2)	(3)	(4)
	Cobb-Douglas	SB	CES	SB
Markup_{t-1}	0.945^{***}	0.938***	0.963***	0.947***
	(0.0246)	(0.0305)	(0.0234)	(0.0252)
$Markup_{t-1}$ change		0.00187		0.00472
		(0.00436)		(0.00419)
Constant	0.0280^{**}	0.0307**	0.0189	0.0252**
	(0.0125)	(0.0146)	(0.0117)	(0.0120)
Observations	195	195	195	195

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Optimal Monetary Policy under Discretion

In the pre-1985 period, inflation dynamics follow

$$\pi_t = \psi_{\pi v} v_t + \psi_{\pi a} a_t + \psi_{\pi u} u_t$$

In the post-1985 period with optimal policy, the central bank minimizes the welfare losses experienced by a representative consumer,

$$\mathbb{E}_0 \sum_{k=0}^{\infty} \beta^t \left(\pi_t^2 + \frac{\kappa}{\epsilon} x_t^2 \right)$$

where x_t is the welfare-relevant output gap, subject to the Phillips curve

 $\pi_t = \kappa x_t + \xi_t,$

where $\xi_t \equiv \beta \mathbb{E}_t \pi_{t+1} + u_t$ is treated as a non-policy shock Inflation dynamics follow

$$\pi_t = \rho_u \pi_{t-1} + \psi_d \varepsilon_t^u$$

where $\psi_d > 0$ depends on deep parameters and inflation persistence is inherited from the cost-push shock.

- Compared to the pre-1985 dynamics there is no significant change in inflation persistence:
 - ▶ in the pre-period, model persistence is around 0.95,
 - while in the post-period persistence is around 0.96, the estimated persistence of cost-push shocks throughout both periods.
- Therefore, such change in the policy stance would have generated an *increase* in inflation persistence, which rules out this explanation.

Optimal Monetary Policy under Commitment

In the pre-1985 period, inflation dynamics follow

 $\pi_t = \psi_{\pi v} v_t + \psi_{\pi a} a_t + \psi_{\pi u} u_t$

In the post-1985 period with optimal policy, the central bank minimizes the welfare losses experienced by a representative consumer,

$$\mathbb{E}_0 \sum_{k=0}^{\infty} \beta^t \left(\pi_t^2 + \frac{\kappa}{\epsilon} x_t^2 \right)$$

where x_t is the welfare-relevant output gap, subject to the Phillips curve

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa x_t + u_t$$

Inflation dynamics follow

$$\pi_t = \rho_c \pi_{t-1} + \psi_c \Delta u_t$$

where $\psi_c > 0$ depends on deep parameters and ρ_c governs inflation persistence, which depends on deep parameters.

- > Standard parameterization yields $\rho_c = 0.31$, excessive fall in inflation persistence
- Commitment implies an *as if* Taylor rule in which ϕ_{π} rose from 1 to 6.5, inconsistent with our empirical evidence.
- Output gap as persistent as inflation!

Price Indexation

- Changes in φ_π and φ_y have no effect on inflation persistence unless there is aggregate anchoring
- Generate aggregate anchoring through price indexation
- A restricted firm resets its price partially indexed to past inflation: $p_{it} = p_{i,t-1} + \omega \pi_{t-1}$
- Otherwise standard
- Phillips curve modified to

$$\Delta_t = \kappa \tilde{y}_t + \beta \mathbb{E}_t \Delta_{t+1},$$

where $\Delta_t := \pi_t - \omega \pi_{t-1}$

Inflation dynamics given by

$$\pi_t = \rho_\omega \pi_{t-1} + \psi_\omega \mathbf{v}_t$$

where ρ_{ω} is decreasing in ϕ_{π}

Trend Inflation

- Ascari & Sbordone (2014) and Stock & Watson (2007) document a fall in trend inflation from 4% in the pre-1985 period to 2% afterwards
- Log-linearize the model around a steady-state with positive trend inflation
- Creates intrinsic persistence through relative price dispersion, which is a backward-looking variable that has no first-order effects in the benchmark
- > Demand side unaffected, Supply side (Phillips curve) now a system of three equations

$$\begin{aligned} \pi_t &= \Xi_1 \psi_t + \Xi_2 y_t + \Xi_3 \mathbb{E}_t \psi_{t+1} + \Xi_4 \mathbb{E}_t \pi_{t+1} \\ \psi_t &= \Gamma_1 s_t + \Gamma_2 y_t + \Gamma_3 \mathbb{E}_t \psi_{t+1} + \Gamma_4 \mathbb{E}_t \pi_{t+1} \\ s_t &= \Lambda_1 \pi_t + \Lambda_2 s_{t-1} \end{aligned}$$

• $\Lambda_2(\overline{\pi})$ increasing in $\overline{\pi}$

Inflation dynamics given by

$$\pi_t = \rho_{\overline{\pi}} \pi_{t-1} + \psi_{\overline{\pi}} \mathbf{v}_t + \xi_t,$$

where ξ_t is an MA(∞) process and $\rho_{\overline{\pi}}$ is decreasing in ϕ_{π} and ϕ_y , and increasing in $\overline{\pi}$

Regression Design

- > The previous regression design is motivated by the Kalman filter
- Suppose that an agent wants to forecast an unobserved fundamental v_t ,

 $\mathbf{v}_t = \rho_{\mathbf{v}} \mathbf{v}_{t-1} + \varepsilon_t^{\mathbf{v}}$

where $arepsilon^{m{v}} \sim \mathcal{N}(\mathbf{0},\sigma_arepsilon^2)$

Instead of observing the fundamental, agents observe a noisy signal

 $x_{it} = v_t + u_{it}$

with $u_i \sim \mathcal{N}(0, \sigma_u^2)$

An agent optimal expectation (Kalman filter) takes the following form

$$\mathbb{E}_t v_t = (1 - G)\mathbb{E}_{t-1}v_t + Gx_{it}$$

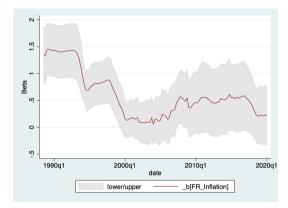
where G is the Kalman gain, the weight that agents (optimally) assign on new information x_{it} relative to the previous forecast, which depends on σ_{ε}^2 and σ_{u}^2

One can show

$$v_{t+1} - \mathbb{E}_t v_{t+1} = \frac{1-G}{G} (\mathbb{E}_t v_{t+1} - \mathbb{E}_{t-1} v_{t+1}) + u_t$$

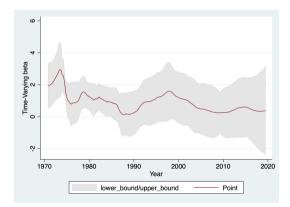
• Hence, an estimate of β pins down information frictions!

Rolling Sample Back



Time-Varying Parameter Regression

$$\pi_{t+3,t} - \mathbb{E}_t \pi_{t+3,t} = \beta_t (\mathbb{E}_t \pi_{t+3,t} - \mathbb{E}_{t-1} \pi_{t+3,t}) + u_t$$



Livingston Survey (Back)

Survey conducted semiannually, estimate the following structural-break variant

$$\pi_{t+2,t} - \mathbb{E}_t \pi_{t+2,t} = \alpha_{CG} + \left(\beta_{CG} + \beta_{CG*1} \mathbb{1}_{\{t \ge t^*\}}\right) \left(\mathbb{E}_t \pi_{t+2,t} - \mathbb{E}_{t-2} \pi_{t+2,t}\right) + u_t$$
(10)

Table: Regression table

	(1) CG Regression	(2) Structural Break			
	CG Regression	Structural Dieak			
Revision	0.380*	0.412**			
	(0.202)	(0.204)			
	(0.202)	(0.204)			
$\operatorname{Revision} \times \mathbb{1}_{\{t \geq t^*\}}$		-0.880**			
(*=*)		(0.414)			
		(0.12.)			
Constant	-0.183*	-0.105			
	(0.102)	(0.119)			
	()	· · · ·			
Observations	146	146			
Standard errors in par	entheses				

Derivation Phillips curve

- ▶ Continuum of firms indexed by $j \in I_f = [0, 1]$
- Each firm is a monopolist producing a differentiated intermediate-good variety, producing output Y_{jt} and setting nominal price P_{jt} and making real profit D_{jt}
- Production function

$$Y_{jt} = N_{jt}^{1-\alpha} \tag{11}$$

▶ Firm *j*'s program

$$P_{jt}^{*} = \arg \max_{P_{jt}} \sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{jt} \left\{ \Lambda_{t,t+k} \frac{1}{P_{t+k}} \left[P_{jt} Y_{j,t+k|t} - \mathcal{C}_{t+k} (Y_{j,t+j|t}) \right] \right\}$$

s.t. $Y_{j,t+k|t} = \left(\frac{P_{jt}}{P_{t+k}} \right)^{-\epsilon} C_{t+k}$

where

•
$$\Lambda_{t,t+k} \equiv \beta^k \left(\frac{C_{t+k}}{C_t}\right)^{-\sigma}$$
 is the stochastic discount factor,

- $C_t(\cdot)$ is the (nominal) cost function,
- $Y_{j,t+k|t}$ denotes output in period t + k for a firm j that last reset its price in period t.

► FOC

$$\sum_{k=0}^{\infty} \theta^{k} \mathbb{E}_{jt} \left[\Lambda_{t,t+k} Y_{j,t+k|t} \frac{1}{P_{t+k}} \left(P_{jt}^{*} - \mathcal{M} \Psi_{j,t+k|t} \right) \right] = 0$$

where

▶
$$\Psi_{j,t+k|t} \equiv C'_{t+k}(Y_{j,t+j|t})$$
 denotes the (nominal) marginal cost for firm *j*
▶ $\mathcal{M} = \frac{\epsilon}{\epsilon-1}$.

Log-linearizing around the zero inflation steady-state, we obtain the familiar price-setting rule

$$p_{jt}^* = (1 - \beta\theta) \sum_{k=0}^{\infty} (\beta\theta)^k \mathbb{E}_{jt} \left(\psi_{j,t+k|t} + \mu \right)$$
(12)

where

$$\psi_{j,t+k|t} = \log \Psi_{j,t+k|t}$$
$$\mu = \log \mathcal{M}.$$

• The (log) marginal cost for firm j at time t + k|t is

$$\psi_{j,t+k|t} = w_{t+k} - mpn_{j,t+k|t}$$
$$= w_{t+k} - [\log(1 - \alpha) - \alpha n_{j,t+k|t}]$$

where

mpn_{j,t+k|t} denotes (log) marginal product of labor for a firm that last reset its price at time t,
 n_{j,t+k|t} denotes (log) employment in period t + k for a firm that last reset its price at time t
 Let ψ_t ≡ ∫_{It} ψ_{jt} denote the (log) average marginal cost

$$\psi_t = w_t - \left[\log(1 - \alpha) - \alpha n_t\right]$$

The following relation holds

$$\psi_{j,t+k|t} = \psi_{t+k} + \alpha(n_{jt+k|t} - n_{t+k})$$

$$= \psi_{t+k} + \frac{\alpha}{1-\alpha}(y_{jt+k|t} - y_{t+k})$$

$$= \psi_{t+k} - \frac{\alpha\epsilon}{1-\alpha}(p_{jt}^* - p_{t+k})$$
(13)

▶ Introducing (13) into (12), we can rewrite the firm price-setting condition as

$$p_{jt}^* = (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k \mathbb{E}_{jt} \left(p_{t+k} - \Theta \hat{\mu}_{t+k} \right)$$

where

- μ̂ = μ_t μ is the deviation between the average and desired markups,
 μ_t = -(ψ_t ρ_t),
 Θ = ^{1-α}/_{1-α+αε}
- Suppose that firms observe the aggregate prices up to period t 1, p^{t-1}
- Then we can restate the above condition as

$$p_{jt}^* - p_{t-1} = -(1 - \beta \theta) \Theta \sum_{k=0}^{\infty} (\beta \theta)^k \mathbb{E}_{jt} \hat{\mu}_{t+k} + \sum_{k=0}^{\infty} (\beta \theta)^k \mathbb{E}_{jt} \pi_{t+k}$$

▶ Define the firm-specific inflation rate as $\pi_{jt} = (1 - \theta)(p_{jt}^* - p_{t-1})$

Then we can write the above expression as

$$\pi_{jt} = -(1-\theta)(1-\beta\theta)\Theta\mathbb{E}_{jt}\hat{\mu}_t + (1-\theta)\mathbb{E}_{jt}\pi_t + \beta\theta\mathbb{E}_{jt}\pi_{j,t+1}$$

where $\pi_t = \int_{\mathcal{I}_f} \pi_{jt} dj$.

Using the aggregate household's labor supply condition we can write

$$\hat{\mu}_t = -\left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right)\tilde{y}_t$$

Finally, we can write the individual Phillips curve as

$$\pi_{jt} = (1-\theta)(1-\beta\theta)\Theta\left(\sigma + \frac{\varphi + \alpha}{1-\alpha}\right)\mathbb{E}_{jt}\tilde{y}_t + (1-\theta)\mathbb{E}_{jt}\pi_t + \beta\theta\mathbb{E}_{jt}\pi_{i,t+1}$$
$$= \kappa\theta\mathbb{E}_{jt}\tilde{y}_t + (1-\theta)\mathbb{E}_{jt}\pi_t + \beta\theta\mathbb{E}_{jt}\pi_{i,t+1}$$
(14)

where $\kappa = \frac{(1-\theta)(1-\beta\theta)}{\theta}\Theta\left(\sigma + \frac{\varphi+\alpha}{1-\alpha}\right)$, and the aggregate Phillips curve can be written as

$$\pi_t = \kappa \theta \sum_{k=0}^{\infty} (\beta \theta)^k \overline{\mathbb{E}}_t^f \tilde{y}_{t+k} + (1-\theta) \sum_{k=0}^{\infty} (\beta \theta)^k \overline{\mathbb{E}}_t^f \pi_{t+k}$$
(15)

Parameter Values

t factor sch Elas. nare ttery	1 0.99 5 0.75 0.75	Galí (2015) Galí (2015) Galí (2015) Galí (2015)
sch Elas. nare	5 0.75	Galí (2015) Galí (2015)
nare	0.75	Galí (2015)
ttery	0.75	
	0.10	Galí (2015)
ıbs. between goods	9	Galí (2015)
ry shock process persistence	0.94	Estimated
coefficient Taylor rule	0.5	Estimated
coefficient Taylor rule pre-1985	1	Estimated
coefficient Taylor rule post-1985	2	Estimated
nnovation variance pre-1985	0.445	$\beta_{CG, pre}$ in Estimated
	0.095	$\beta_{CG,post}$ in Estimated
	novation variance pre-1985 novation variance pre-1985	nnovation variance pre-1985 0.445

Optimal expectations

- Aggregate inflation persistence depends on individual expectation's anchoring
- Guessing (and verifying) dynamics for \tilde{y}_t and π_t , we can rewrite the firm problem as

$$\pi_{jt} = -\frac{1 + \rho_{\mathsf{v}}\chi\left(\psi_{\pi} + \frac{\sigma\psi_{\mathsf{y}}}{1 - \frac{\vartheta}{\rho_{\mathsf{v}}}}\right)}{\sigma + \phi_{\mathsf{y}}}\kappa\theta\mathbb{E}_{jt}\mathsf{v}_{t} + \left[1 - \theta - \kappa\theta\frac{\phi_{\pi} - \vartheta}{\sigma(1 - \vartheta) + \phi_{\mathsf{y}}}\right]\mathbb{E}_{jt}\pi_{t} + \beta\theta\mathbb{E}_{jt}\pi_{j,t+1}$$

Proposition 4

Firm i's nowcast of the monetary policy shock process is

$$\mathbb{E}_{it}\mathbf{v}_t = \mathbb{E}_{i,t-1}\mathbf{v}_t + G(\mathbf{x}_{it} - \mathbb{E}_{i,t-1}\mathbf{v}_t) \tag{16}$$

where the Kalman gain is given by $G(\rho, \sigma_{\varepsilon}, \sigma_u) = 1 - \frac{\lambda}{\rho}$. Firm i's expectations of current aggregate output and individual future inflation as

$$\mathbb{E}_{it}\pi_t = \mathbb{E}_{i,t-1}\pi_t + G_1(x_{it} - \mathbb{E}_{i,t-1}v_t)$$
$$\mathbb{E}_{it}\pi_{i,t+1} = \mathbb{E}_{i,t-1}\pi_{i,t+1} + G_2(x_{it} - \mathbb{E}_{i,t-1}v_t)$$

where $G_k(\beta, \sigma, \theta, \kappa, \phi_{\pi}, \phi_y, \rho, \sigma_{\varepsilon}, \sigma_u)$ for $k = \{1, 2\}$, satisfying $G_1 < G_2 < G$.

Optimal expectations

- Exogenous variable forecast: expectations will only update by a factor $G \in (0, 1)$, a firm does not need to infer others' decision
 - agents only need to rely on their private information, since others' actions do not determine the forecasted variable
- Forecasts of endogenous variables depend on others' actions, giving rise to higher-order beliefs
 - degree of anchoring is higher at each belief order
 - larger anchoring in expectations of endogenous aggregates

	(1)	(2)	(3)
	NKPC	Break Output	Break
$\overline{\mathbb{E}}_{t}^{f} \tilde{y}_{t+2,t}$	1.014 ^{***}	1.402***	1.079**
	(0.262)	(0.438)	(0.418)
$\overline{\mathbb{E}}_{t}^{f} \tilde{y}_{t+4,t+2}$	-0.0717	-0.680	-0.354
	(0.335)	(0.553)	(0.533)
$\overline{\mathbb{E}}_t^f \pi_{t+2,t}$	-0.0552	-0.0352	-0.264***
	(0.0652)	(0.0602)	(0.0836)
$\overline{\mathbb{E}}_t^f \pi_{t+4,t+2}$	-0.0375	-0.123	0.237
	(0.151)	(0.147)	(0.180)
$\overline{\mathbb{E}}_t^f \tilde{y}_{t+2,t} \times \mathbb{1}_{\{t \ge t^*\}}$		-0.892* (0.526)	-0.598 (0.509)
$f_t^{\tilde{y}_{t+4,t+2}\times 1} \{t \ge t^*\}$		0.882 (0.662)	0.555 (0.641)
$f_t^{\pi_{t+2,t}\times \mathbb{1}}_{\{t\geq t^*\}}$			0.303 ^{***} (0.0955)
$\bar{t}_t^f \pi_{t+4,t+2} \times \mathbb{1}_{\{t \geq t^*\}}$			-0.486 ^{**} (0.191)
Constant	-0.115	0.388	0.479
	(0.250)	(0.398)	(0.460)
Observations	99	99	99

Table: Regression table

* p < 0.10, ** p < 0.05, *** p < 0.01

Proposition 5 (Back)

In the dispersed information framework, equilibrium output gap and inflation dynamics are given by

$$\begin{split} \tilde{y}_t &= -\frac{\vartheta(\phi_\pi - \vartheta)}{\sigma(1 - \vartheta) + \phi_y} \pi_{t-1} - \psi_y \frac{\chi(\vartheta)}{1 - \vartheta/\rho} \mathsf{v}_t \\ \pi_t &= \vartheta \pi_{t-1} - \psi_\pi \chi(\vartheta) \mathsf{v}_t \end{split}$$

where

$$\chi(\vartheta) = \left(1 - \frac{\frac{\kappa \sigma \vartheta(\phi_{\pi} - \vartheta)}{\sigma(1 - \vartheta) + \phi_{y}}}{(1 - \rho\beta)[\sigma(1 - \rho) + \phi_{y}] + \kappa(\phi_{\pi} - \rho) + \frac{\kappa \sigma \vartheta(\phi_{\pi} - \vartheta)}{\sigma(1 - \vartheta) + \phi_{y}}}\right) \left(1 - \frac{\vartheta}{\rho}\right) \in (0, 1)$$

and ϑ is a scalar that is given by the reciprocal of the largest root of the following cubic

$$\mathcal{P}(z) = (\beta \theta - z)(z - \rho^{-1})(z - \rho) - \frac{\sigma_{\varepsilon}^2}{\rho \sigma_u^2} z \theta \left[\beta - z \left(1 + \frac{\kappa(\phi_{\pi} - \vartheta)}{\sigma(1 - \vartheta) + \phi_y} \right) \right]$$
(17)

Proposition 6 (Back)

The ad-hoc hybrid dynamics (??) produces identical dynamics to the dispersed information model if

$$egin{aligned} B - oldsymbol{arphi} &= oldsymbol{\omega}_f \delta(AB +
ho B) \ oldsymbol{\omega}_b &= (I_2 - oldsymbol{\omega}_f \delta A) A \end{aligned}$$

for certain matrices ω_b and ω_f

$$\boldsymbol{\omega}_b = \begin{bmatrix} \omega_{b,11} & \omega_{b,12} \\ \omega_{b,21} & \omega_{b,22} \end{bmatrix}$$
 and $\boldsymbol{\omega}_f = \begin{bmatrix} \omega_{f,11} & \omega_{f,12} \\ \omega_{f,21} & \omega_{f,22} \end{bmatrix}$

where

$$A = egin{bmatrix} 0 & -rac{artheta(\phi_{\pi}-artheta)}{\sigma(1-artheta)+\phi_{y}} \end{bmatrix} \quad ext{and} \quad B = egin{bmatrix} -\psi_{y} \ -\psi_{\pi}\left(1-rac{artheta}{
ho}
ight) \end{bmatrix} \chi(artheta)$$

Corollary 1 (Back)

The as if DIS and Phillips curve dynamics are described by

$$\tilde{y}_{t} = \frac{\omega_{y\pi}}{\sigma} \pi_{t-1} - \frac{1}{\sigma} \mathbb{E}_{t} r_{t} + \frac{\delta_{yy}}{\sigma} \mathbb{E}_{t} \tilde{y}_{t+1} + \frac{\delta_{y\pi} - 1}{\sigma} \mathbb{E}_{t} \pi_{t+1}$$
$$\pi_{t} = \omega_{\pi\pi} \pi_{t-1} + \kappa y_{t} + \delta_{\pi y} \mathbb{E}_{t} \tilde{y}_{t+1} + \delta_{\pi\pi} \beta \mathbb{E}_{t} \pi_{t+1}$$

where

$$\begin{split} \omega_{y\pi} &= (\sigma + \phi_y)\omega_{b,12} + \phi_{\pi}\omega_{b,22} \\ \omega_{\pi\pi} &= \omega_{b,22} - \kappa\omega_{b,12} \\ \delta_{yy} &= \frac{\sigma}{\sigma + \phi_y + \kappa\phi_{\pi}} \left[(\sigma + \phi_y)(\omega_{f,11} + \kappa\omega_{f,12}) + \phi_{\pi}(\omega_{f,21} + \kappa\omega_{f,22}) \right] \\ \delta_{y\pi} &= \frac{1}{\sigma + \phi_y + \kappa\phi_{\pi}} \left\{ (1 - \beta\phi_{\pi})[(\sigma + \phi_y)\omega_{f,11} + \phi_{\pi}\omega_{f,21}] + (\kappa + \beta\sigma + \beta\phi_y)[(\sigma + \phi_y)\omega_{f,12} + \phi_{\pi}\omega_{f,22})] \right\} \\ \delta_{\pi y} &= \frac{\sigma}{\sigma + \phi_y + \kappa\phi_{\pi}} \left[(\omega_{f,21} - \kappa\omega_{f,11}) + \kappa \left(\omega_{f,22} - \kappa\omega_{f,12}\right) \right] \\ \delta_{\pi\pi} &= \frac{1}{\sigma + \phi_y + \kappa\phi_{\pi}} \left\{ (1 - \beta\phi_{\pi})(\omega_{f,21} - \kappa\omega_{f,11}) + [\kappa + \beta(\sigma + \phi_y)] \left(\omega_{f,22} - \kappa\omega_{f,12}\right) \right\} \end{split}$$