
Michal Franta
Czech National Bank
May 2016
The aim of the paper

- To examine roles of extreme shocks and non-linearities during extreme events in the economy.

 - Extreme/rare shocks:
 - Does occurrence of large shocks corresponds to normal distribution?
 - t-distributed shocks (fat tails)

 - Non-linearities:
 - regime switch in shock propagation mechanism and shock volatility

- Extreme events:
 - crises, downturns, crashes
 - focus on dynamics of such events

- Need to take into account credit/financial markets (and real economy).
Motivation

Figure: Reduced form residuals (absolute value) in standard deviation units.
Motivation

- Model used in estimation of residuals: linear, small-scale, Gaussian, with constant shock volatility.
- Each characteristic can represent a wrong assumption.
- Need to account for all types of non-linearity and fat tails simultaneously - ignoring one can falsely suggest presence of the other.
- Important for policy makers:
 - shocks are unexpected - cannot be dealt with by some preemptive measures
 - non-linearities reflect structure of the economy - can be affected by regulation
- Paper does not provide a complex answer, just another piece of empirical evidence.
t-distributed shocks:
- DSGE models: Chib and Ramamurthy (2014), Cúrdia et al. (2014)
- VARs: Chiu et al. (2014)

Non-linearities:
- DSGE models: financial accelerator (Bernanke et al., 1996)

Models with t-dist. shocks linear/linearized, the only non-linearity is represented by stochastic volatility of shocks.

Non-linear models usually assume normal distribution of shocks.
Contribution and results

- Accounting for t-distributed shocks, regime switch in shock propagation mechanism and regime switch in shock volatility (and addressing concerns related to 'small-scale’ model).

Results:
- strong evidence of fat tails
- fat tails more important than non-linearities in terms of model data fit
- role for non-linearities in density forecasting
Flexible enough to distinguish between regime switch in shock propagation mechanism, shock volatility and at the same time allow for t-distributed shocks.

Simple enough to estimate all model parameters (important for density forecasting!) and avoid overfitting.

Threshold VAR:

$$y_t = \sum_{i=1}^{R} x_{t,p_i} B_i I \left[r_{i-1} < y_{t-d}^{TR} < r_i \right] + u_t,$$

$$u_t \sim MN \left(0, \sum_{i=1}^{R} I \left[r_{i-1} < y_{t-d}^{TR} < r_i \right] \Sigma_i \right)$$

or $$u_t \sim MT \left(0, \sum_{i=1}^{R} I \left[r_{i-1} < y_{t-d}^{TR} < r_i \right] \Sigma_i, n \right)$$
Random variable distributed as multivariate t distribution can be viewed as normally distributed with stochastic volatility:

\[
\begin{align*}
\omega_t & \sim \Gamma \left(\frac{n}{2}, \frac{2}{n} \right) \\
\mathbf{u}_t & \sim \mathcal{MN} \left(\mathbf{0}, \omega_t^{-1} \sum_{i=1}^{R} I \left[r_{i-1} < y_{t-d}^{TR} < r_i \right] \Sigma_i \right)
\end{align*}
\]
Data and Estimation

- Data set: quarterly data 1984Q1-2013Q4 (1964Q1-2013Q4, 1984Q1-2008Q2)
- Output growth, inflation, federal funds rate, measure of credit/financial market conditions.
- Credit/financial market conditions: BAA spread (Mix variable, Financial conditions index - FCI). Robustness wrt this indicator important to address the concern about small-scale model.
- Estimation: Gibbs sampler (Chen and Lee, 1995) with Metropolis step (Koop and Potter, 2003) and adaptive rejection sampling (Gilks and Wild, 1992).
- Priors: independent Normal-inverse Wishart, Beta for thresholds, Gamma for degrees of freedom, multinomial for delay parameter.
- 100 000 iterations for inference, 50 000 burn-in period
- One regime or two regimes assumed.
Results

In-sample fit measured by the Deviance Information Criterion (DIC).

- Specifications with t-distributed shocks preferable.
- For normal shocks regime switch helps to explain data for Mix variable and FCI.
- So, imposing normality can suggest presence of non-linearity which is a consequence of ignored fat tails.

Table: DIC (quarterly data, 1984Q1-2013Q4)

<table>
<thead>
<tr>
<th>Shocks:</th>
<th>BAA spread</th>
<th>Mix variable</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of regimes</td>
<td>Number of regimes</td>
<td>Number of regimes</td>
</tr>
<tr>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>666.26</td>
<td>-154.30</td>
<td>744.37</td>
</tr>
<tr>
<td></td>
<td>1258.36</td>
<td>-190.61</td>
<td>701.13</td>
</tr>
<tr>
<td>t-dist.</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>476.23</td>
<td>-337.05</td>
<td>530.95</td>
</tr>
<tr>
<td></td>
<td>519.17</td>
<td>-288.22</td>
<td>639.90</td>
</tr>
</tbody>
</table>
Excluding the Great Recession provides similar results (lower need for fat tails).

Extending data set (start by 1964Q1) provides similar results.

Strong need for fat tails (n close to 5), allowing for regime change in shock volatility does not lower fat-tailedness.

Results

In-sample fit

![Graphs showing BAA spread, MA(2), Mix variable, MA(6), and Financial condition index.](image-url)
Results

Note on robustness

- Three regimes (specification with quarterly data and BAA spread).
- Table suggests that models with more regimes (TVP-VAR) are perhaps not necessary:

<table>
<thead>
<tr>
<th>Number of regimes</th>
<th>Shocks: 1</th>
<th>Shocks: 2</th>
<th>Shocks: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>666.26</td>
<td>1258.36</td>
<td>1319.29</td>
</tr>
<tr>
<td>t-dist.</td>
<td>476.23</td>
<td>519.17</td>
<td>597.00</td>
</tr>
</tbody>
</table>

Table: DIC

Michal Franta (Czech National Bank) Rare Shocks vs. Non-linearities: What Drives May 2016 13 / 17
Results
Out-of-sample fit

- Pseudo out-of-sample point/density forecasting exercise based on windows ending at 2002Q4 - 2013Q4.
- One-period-ahead forecasts compared with 45 ex-post observations, two-period-ahead forecasts with 44 observations, etc.
- Point/density forecasts simulated within the run of the Gibbs sampler - iterated forecasts for up to 7 quarters.
- Measure of point forecasting accuracy: root mean square error.
- As a measure of accuracy of density forecasts is used Kullback-Leibler Information Criterion.
- So, looking for model that yields the highest average logarithmic score \(\frac{1}{N} \sum \ln f_{t+h,t}(\bar{x}_{t+h}) \).
Results
Out–of-sample fit

- Basically forecasting accuracy measured for 4 variables and 7 forecasting horizons (28 cases).

- Density forecasts: for majority of cases the specification with regime switch and/or t-distributed shocks are preferred.

- When focusing on point forecasts, linear model with normally distributed errors preferred approximately in half of the cases.

- **So, non-linearities and fat tails improve tails of density forecasts (i.e. we get more accurate forecasts of extreme events).**

- Results are not driven by the Great Recession (evaluation on sub-sample 2002Q4-2008Q2 results in shift of preference towards non-linear models and t-distributed shock distributions).
Results
Out-of-sample fit

![Graphs showing output growth, inflation, FF rate, and credit market condition over the years 2002Q2 to 2009Q4. The graphs compare t-dist. shocks, 2 regimes vs. nominal shocks, 1 regime.](image-url)
Conclusions

- First attempt to account for all possible reasons of extreme events.
- Econometric/computational reasons force us to use small-scale model with a simple way how to account for non-linearities.
- Non-linearities and fat-tails in error distributions lead to more accurate tails of density forecasts.
- Application: probabilistic evaluation of macro scenarios in stress testing.