Financial Frictions and Credit Spreads

Ke Pang Pierre L. Siklos Wilfrid Laurier University

Modelling Challenges

- Considerable work underway to incorporate a role for <u>financial frictions</u>
 - the financial crisis highlighted this as a weakness of DSGE models
 - Understood here to represent a cost that gives rise to a *spread* between borrowing and lending rates. A wedge exists (i.e., due to asymmetric information) between borrowers and savers, and there are *intermediation costs* financial institutions must absorb

Selected Spreads: view I

Selected Spreads: view II

Modelling Challenges

- The 'canonical' model (Woodford 2003) has been seen as not ideally suited to handling to capital market imperfections
 - In general, the weaknesses of the New Keynesian paradigm are well-known (Goodhart 2008, Tovar 2008, Chari et.al. 2009)
 - But...its either the best we have or it may be more fruitful to 'repair' it rather than discard it completely
 - Provides a 'disciplined' way of thinking about interactions of key macroeconomic variables

Focus of the Study

- Spreads play a central role in the transmissions mechanism
 - Bernanke and Gertler (1989, 1995)
 - The economy is 'interest sensitive', that is, there exists a "credit channel"
 - May operate through balance sheets or bank lending behaviour
 - We don't take a stand on one versus the other although <u>focus is on</u> <u>the latter in this study</u>
- Walsh (2009)"...factors that generate movements in spreads, or the degree to which these movements reflect inefficient fluctuations that call for policy responses" still eludes us
 - In particular why are spreads subject to <u>sharp movements</u> and why can they be so <u>volatile</u>?
 - Do they really matter (in a crisis): NO Chari. et.al. 2008); YES (Cohen-Cole e.al.2008)

Overview of the Approach of the Paper

- Credit frictions model of Curdia & Woodford (2009, 2009a) is <u>starting</u> point
 - NOTE: has changed in its various incarnations
- The model is adapted to the concerns of this study, namely attempting to replicate movements and volatility in spreads
 - Agents are heterogeneous, intermediation is 'inefficient' or costly
 - Actual U.S. time series are used for exogenous factors (e.g., TFP shocks, government spending)
 - We try to replicate movements in selected spreads
 - We explore the impact of two types of monetary policies
 - QUANTITATIVE EASING: varying the amount of aggregate reserves to influence the spread between the fed funds rate and the interest rate on reserves (liabilities of the Fed's balance sheet)
 - CREDIT EASING: debt-financed fiscal policy (asset composition of the Fed's balance sheet)

MODEL: Households I

- 2 types of households
 - *b* more impatient than *s*
 - b borrows, s saves
 - Remain the same type form one period to the next with prob. [δ , 1- δ]
- Borrowing is done ONLY via intermediary
 - One period contracts (riskless) + households can insure against various risks
 - Necessary because
 - 1. heterogeneity of households; 2. credit frictions; 3. risk sharing
 - Represents a 'key' source of financial frictions

• Lifetime utility function

$$\sum_{t=0}^{\infty} \beta^{t} \{ U^{\tau_{t}(i)}[c_{t}(i)] - V^{\tau_{t}(i)}[h_{t}(i)] \}$$

Household i's (net) wealth

$$A_{t}(i) = [B_{t-1}(i)]^{+} (1 + i_{t-1}^{d}) + [B_{t-1}(i)]^{-} (1 + i_{t-1}^{b}) + D_{t}^{int}(i) + T_{t}(i)$$
Deposit and borrowing rates (riskless)

• Budget constraint

$$B_{t}(i) = A_{t}(i) - P_{t}c_{t}(i) + W_{t}h_{t}(i) + D_{t}(i) + T_{t}^{g}(i)$$

MODEL: Households II

- B_t(i) is the budget constraint
- Lifetime utility is maximized subject to A_t(i) & B_t(i)
- Euler equation governs labour supply

$$\boldsymbol{W}_t \boldsymbol{\lambda}_t^{\tau_t(i)} = \boldsymbol{V}_h^{\tau_t(i)} [\boldsymbol{h}_t^{\tau_t(i)}]$$

 Optimal consumption for borrower (b), saver (s)

$$\lambda_{t}^{b} = \beta \frac{1 + i_{t}^{b}}{\Pi_{t+1}} \{ [\delta + (1 - \delta)\pi_{b}]\lambda_{t+1}^{b} + (1 - \delta)\pi_{s}\lambda_{t+1}^{s} \}$$

MODEL: Financial Intermediaries

- Perfectly competitive
- Intermediation costs are non-linear (convex function)
- Interest rates are given, determine supply of loans to maximize profits
- Leads to a functional form that describes spread
- Intermediation costs create a spread & changes, NOT increased risk

• 'Technolog[ies]' $d_t = b_t + \Phi(b_t) \implies d_t = b_t + \Phi(b_t - \overline{b})$

- Spread $1+i_t^b = (1+\omega_t)(1+i_t^d)$
- Equilibri[a]

$$\omega_t = \Phi'(b_t)$$

$$\Longrightarrow \omega_t = \Phi'(b_t - \overline{b})$$
Senchmark/Modified

MODEL: Firms & Government

• Firms

- A single good
- Perfectly competitive price takers
- Isoelastic production function (subject to a TFP (i.e., productivity) shock [TFP is exogenous]
- Government
 - Budget is balanced every period [spending and transfers are exogenously given]

MODEL: Monetary Policy

- A 'Taylor' type rule
 - Contemporaneous
 - The 'policy rate' is the deposit rate
 - CB makes optimal policy projections that asymptotically approaches the s.s. (Svensson & Tetlow 2005)
- Model closed with 2 market clearing conditions

- Policy rule $i_t^d = \overline{\iota}^d \left(\frac{\Pi_t}{\overline{\Pi}}\right)^{\gamma_{\pi}} \left(\frac{\gamma_t}{\overline{\gamma}}\right)^{\gamma_y}, \quad \gamma_{\pi}, \gamma_y \ge 0$
- Goods & labour markets $Y_t = \pi_b c_t^b + \pi_s c_t^s + G_t + \Phi(b_t)$ $h_t = \pi_b h_t^b + \pi_s h_t^s$

Evolution of b

- Aggregate over all borrowers $\int_{B_{t}} A_{t}(i) di = -\delta P_{t-1} b_{t-1}(1+i_{t-1}^{b}) + \delta \pi_{b} D_{t}^{\text{int}} + (1-\delta) \pi_{b} A_{t} \leftarrow A_{t} = P_{t-1} [d_{t-1}(1+i_{t-1}^{d}) - b_{t-1}(1+i_{t-1}^{b})] + D_{t}^{\text{int}}$
- Aggregate budget constraints $P_t b_t = -\int_{B_t} A_t(i) di + \pi_b (P_t c_t^b - W_t h_t^b - D_t - T_t^g)$
- Substitution yields debt dynamics:

$$b_{t} = \pi_{b}\pi_{s}[(c_{t}^{b} - c_{t}^{s}) - w_{t}(h_{t}^{b} - h_{t}^{s})] - \pi_{b}\Phi(b_{t})$$

$$\{c_{t}^{b}, c_{t}^{s}, h_{t}^{b}, h_{t}^{s}, b_{t}, Y_{t}, h_{t}\} + \frac{\delta(1 + i_{t-1}^{d})}{\Pi_{t}}[b_{t-1} + \pi_{b}\Phi(b_{t-1}) + \pi_{s}b_{t-1}\omega_{t-1}] \qquad \text{PRICES}$$

$$[2u, q_{t}, \tau_{t}] = \sum_{\substack{\{Z_{t}, q_{t}, \tau_{t}\} \\ \{Z_{t}, q_{t}, \tau_{t}\} \\ \{Z_{t}, q_{t}, \tau_{t}\} \\ \{Z_{t}, q_{t}, \tau_{t}\} = EXOGENOUS$$

Calibration - Baseline

'Conventional'

TR coeffs

- η = 51.6 (Curdia-Woodford)
- δ=0.9
- $\pi_{\rm b} = \pi_{\rm s} = 0.5$
- $\beta/i^d = 4\%$
- φ^s =1, φ^b /h for both types the same in s.s.
- ω=2% in s.s.
- Debt/GDP=80% in s.s.
- Y,Z=1 in s.s.

 $U^{\tau}(c_t^{\tau}) = \frac{\theta^{\tau}(c_t^{\tau})^{1-\frac{1}{\sigma^{\tau}}}}{1-\frac{1}{\sigma^{\tau}}}, \quad \sigma^{\tau} > 0$ $V^{\tau}(h_t^{\tau}) = \frac{\varphi^{\tau}(h_t^{\tau})^{1+\nu}}{1+\nu}, \quad \nu \ge 0$ $\Phi(b_t) = \varphi b_t^{\eta}, \quad \eta > 1$

<u>Ta</u>	ble	1: Lis	t of]	<u>Parameter</u> s
0	γ	0.75	eta	0.9512
1)	0.1	ϕ	31.0475
C	σ^b	12.5	$ heta^b$	2.3074
C	τ^s	2.5	$ heta^s$	1.7088
~	γ_{π}	1.5	ϕ^b	1.2177
~	γ_y	0.5	ϕ^s	1
1	7	51.6	\bar{Z}	1
Ċ	5	0.9	\bar{g}	0.15
7	π_b	0.5	$\bar{ au}$	0.3
7	$ au_s$	0.5		

Calibration – Sensitivity Analysis I

eta	8	16.6	21.6	24	31.6	36.6	41.6	46.6	51.6	56.6	61.6	66.6	71.6
nhi	0 0119	0 0391	0 0918	0 1412	0 5845	1 5401	4 1351	11 2652	31 0475	86 3794	242 2122	683 6796	1940 7
pm	0.0110	0.0001	0.0010	0.1412	0.0040	1.0401	4.1001	11.2002	01.0470	00.07.04		000.0700	1040.7
phib	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177	1.2177
thetab	2.307	2.3072	2.3073	2.3073	2.3073	2.3073	2.3073	2.3073	2.3074	2.3074	2.3074	2.3074	2.3074
thetas	1.7071	1.7081	1.7083	1.7084	1.7086	1.7086	1.7087	1.7087	1.7088	1.7088	1.7088	1.7088	1.7088
beta	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512	0.9512

 $\{Z_t, g_t, \tau_t\}$

TFP from Chen et.al. (2008)

Results

- Solution is numerical to non-linear equations
 - Allow 200 periods [years] to converge (happens much faster
 - Implies 1600 equations
- What TFP?
- Role of exogenous 'drivers'
- Simulated spreads: what they look like
- Model assessment: a bird's eye view
- Impact of 'unconventional' monetary policies

Which TFP?

The role of Specific Shocks I

Figure 5: Benchmark Model with All Except TFP

The Role of Specific Shocks II

Figure 7: Benchmark Model with Only τ

Simulation I: Benchmark

Simple test I

Variable	Coeff.	Std error	Z-statistic	p-value
С	004	.005	83	.41
omega	.94	.24	3.95	.00

Eta = 51.6

Simple test la

Variable	Coeff.	Std error	t-statistic	p-value
С	.001	.002	9.06	.00
omega	.57	.27	2.07	.04

Eta = 2

Simulation II: Benchmark

24

Simple test II

Variable	Coefficient	Std Error	t-Statistic	p-value
С	-0.013	.013	-4.26	.00
Omega	.43	.15	2.80	.01

Eta = 51.6

Simulation III: Benchmark

26

Simple Test III

Variable	Coeff	Std error	t-statistic	p-value
С	.06	.01	12.15	.00
Omega	-1.24	.26	-4.73	.00

Eta = 51.6

Simulations vs Facts I

Standard Dev of Inflation	ACF (1)	H-P filtered PCE inflation
Chen TFP =.0099	.28	.34
FM TFP = .006	.29	
FMLP = .0058	.25	
FMU = .0059	.30	

Simulations vs Facts II

Statistic	Omega (bench) eta=2	Omega (bench) eta = 51.6	Omega (10 yr LESS 3 m)
Mean	.00	.02	.02 ('03-'09) .014 ('34-'09)
Std. Dev.	.0159	.0150	.013 .019
AC (1)	.22	.29	.22*
AC (2)	25	23	14
AC (3)	37	41	.06
AC (4)	34	35	.14
AC (5)	.15	.10	03

* 1st difference

Varieties of Omegas

Debt Dynamics

31

Convexity

Inflation

Steady state = 1

33

Comparing Inflation

Sources of Changes in the Spread

		$\omega^{\eta=51.6}$		$\omega^{\eta=51.6} \omega_j$
ω _g		-0.06 (.70)	ω _g ,ω _{TFP} -0.26 (.08)	0.60 (.00)
ω_{τ}		0.81 (.00)	ω _g ,ω _τ -0.05 (.73)	0.96 (.00)
ω_{TFP}		0.88 (.00)	ω _{TFP} , ω _τ 0.46 (.00)	0.98 (.00)
IVE Est.	$\omega^{\eta} = 5_{1.6} = \frac{0}{(.0)}$ * = 1 % , + = 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>ω</i> _{т F P}

p-values in parenthesis

'Unconventional' Monetary Policies

- Credit easing
 - Central bank does NOT incur the same intermediation costs (passed on in the GVT budget)
- Quantitative easing
 - An increase in the monetary base (i.e., bank reserves)

• For C.E. add a new element to b

- Profit max as before but s.t. s.t. $d_t = L_t + \Phi(L_t)$
- Where $\Phi(L_t) = \varphi L_t^{\eta}$
- For Q.E. Augment intermediation

 $R_t^{cb} + d_t = b_t + \Phi(b_t)$

Dynamics of Unconventional MP

Credit Easing
 Quantitative Easing

$$b_{t} = \pi_{b}\pi_{s}[(c_{t}^{b} - c_{t}^{s}) - w_{t}(h_{t}^{b} - h_{t}^{s})] - \pi_{b}\Phi(b_{t} - L_{t}^{cb}) + \frac{\delta(1 + i_{t-1}^{d})}{\Pi_{t}}[b_{t-1} + \pi_{b}\Phi(b_{t-1}L_{t}^{cb}) + \pi_{s}b_{t-1}\omega_{t-1}] + \frac{\pi_{b}(1 + i_{t-1}^{d})L_{t-1}^{cb}}{\Pi_{t}}(\omega_{t-1} + 1 - \delta)$$

$$b_{t} = \pi_{b}\pi_{s}[(c_{t}^{b} - c_{t}^{s}) - w_{t}(h_{t}^{b} - h_{t}^{s})] - \pi_{b}\Phi(b_{t}) + \frac{\delta(1 + i_{t-1}^{d})}{\Pi_{t}}[b_{t-1} + \pi_{b}\Phi(b_{t-1}) + \pi_{s}b_{t-1}\omega_{t-1} - \pi_{b}R_{t-1}^{cb}]$$

IRFs: CE vs QE

CE:1% increase CB s.s credit, $L^{cb} = .01 \quad \overline{b}$

QE:1% of s.s. Credit $R^{cb} = 0.01\overline{b}$

Accum. IRFs: CE vsQE

 $R^{cb} = 0.01\overline{b}$

What's next?

- Simulations
 - Change inflation target
 - Relax perfect substitutability of government debt & deposits
 - Relax the 'costless' CE easing policy assumption
 - Consider other kinds of 'financial shocks'
- Empirical
 - Many ways to proceed but...

Conclusions

- A highly level of convexity is needed to match sharp movements and volatility in the spread
 - a less non-linear intermediation costs function would lead to conditions as in the Great Moderation
 - A challenge is to link this type of phenomenon to how intermediation costs are actually determined
- Credit easing when its a 'free lunch' to the CB can reduce the spread
- QE is less effective and actually leads to a rise in the spread. This appears to describe the early days of the crisis in the fall of 2007