Integration, growth, and policy design: lessons for EU accession countries

- Ongoing challenge for all:
 - Monetary & fiscal discipline
 - Sustainable supply side growth
- Institutions affect choice of macro regime
- Regime affects institutional reform
- Need right pillars for monetary policy

Simultaneous policy failures

- Commitment problems in:
 monetary, fiscal, structural
- Fixing monetary alone not optimal
- Integration a chance to make progress on fiscal and structural

Post 1990 : Europe & Latin America

- Disinflation largely successful
- Episodes of monetary reversal
 causes often fiscal indiscipline
- Growth

- most reliable when macro discipline

-goal of EU accession a huge help

Formal model

- Poor country has low tax capacity **T**
- Taxes above **T** distort output
- Costly structural adjustment raises T
- Baseline model takes **T** as fixed
- For simplicity, make coefficients unity

(1)	$\mathbf{y} = \boldsymbol{\pi}^{\mathbf{u}} - \boldsymbol{\tau} + \boldsymbol{\varepsilon}$	output equation
	$\tau = \mathbf{t}^{\mathbf{e}} - \mathbf{T}$	tax distortion
(2)	$\mathbf{G} = \mathbf{t} + \boldsymbol{\pi}$	budget financing
(3)	$\mathbf{L} = \pi^2 + \mathbf{y}^2 + \mathbf{g}^2$	loss function
	$\mathbf{g} = \mathbf{G} - \mathbf{G}^*$	g defined
(4)	$\mathbf{g} = \mathbf{\tau} - \mathbf{h} + \mathbf{\pi}$	budget
(5)	$h = G^{*} - t^{+} > 0$	inherited structure

- h indexes remaining transition (h* = 0)
- monetary policy more flexible than fiscal
- Hence timing:

h fixed at start of period
Then private expectations formed
Then fiscal policy set
Then shock ε observed
Then monetary policy & inflation

First best (conditional on h)

Expected policy: τ, π^{e} minimise $[\pi^{e} + \tau^{2} + (\tau - \mathbf{h} + \pi^{e})^{2}]$

•
$$h/3 = \pi^{e} = \tau$$
 $g^{e} = y^{e} = -h/3$

High inflation & low output BOTH caused by poor structural inheritance (large h)

Accommodation of shocks:

Assume $\pi^{u} = A\epsilon$ & $g^{u} = \pi^{u}$ **A minimises** $\sigma^{2}[A^{2} + (1+A)^{2} + A^{2}]$ $\pi^{u} = g^{u} = -\epsilon/3$, $y^{u} = 2\epsilon/3$ (6) **Optimally exploits informational advantage**

of flexible monetary policy

Monetary discretion

- Monetary policy chooses inflation taking expectations as given but knowing π^u affects g^u
- Everyone anticipates this,

hence deduce $\pi^{e}(\tau, h)$

• Fiscal policy then chooses τ

(a) π^{u} rule still best: Same loss from shocks (b) Comparing expected levels Ist best Discretion h / 3 h / 4 τ h / 3 h / 2 π^{e} -h/3 -h/4y^e ge -h/3 -h/4 $(3/9)h^2$ $(3/8)h^2$ $L(\pi^e, y^e, g^e)$

Delegating monetary policy

- Rogoff: 'conservative central banker' Lower π^e but too little shock accommodation
- Svensson Delegate inflation target π^*
- Loss functions
- Central bank
- Government

 $[\pi - \pi *]^{2} + k y^{2}$ $\pi^{2} + y^{2} + g^{2}$

Choose fiscal policy knowing how central bank then behaves

3 key results

Policy design [k=1/2, π* = h/6]
 decentralises the first best

- π* offsets the inflation bias, but <u>still</u> need conservative central bank, now to offset fiscal externality
- Euroisation at $\pi = 0$ <u>inferior</u> to domestic monetary discretion in this model

So why join EMU ?

- Also affects trade, growth, and potential output (Frankel & Rose)
- Currency unions affect fiscal discipline

- Need fiscal commitment problems

• Currency unions affect reform

- Also need reform commitment problems

Endogenising structural adjustment

- Benefit of lower h (higher tax capacity): higher y, lower π, higher g
- Assume $V^e = L^e + (h-h_{-1})^2 + \phi (V_{+1})^e$
- Solve for optimal rate of reform $\mathbf{h} = \rho \mathbf{h}_{-1}$
- Less discounting (larger \$\oplus\$) makes adjustment more rapid
- Costs same, benefits bigger

Distortions & structural adjustment

- Larger distortions raise benefit of reform
- Hence monetary discretion speeds structural adjustment
- Monetary union might <u>slow</u> growth
- So far only monetary failures: now need to allow fiscal and structural too

Fiscal failures

- Fiscal policy chosen after private expectations but before shock and monetary response
- output equation $y = \pi^u \tau^e + \varepsilon$ surprise taxes are lump sum taxes
- Hence choose lump sum taxes to achieve $g^e = 0$
- Private sector anticipates this
- Monetary commitment alone may make things worse first best needs fiscal commitment too

Fiscal and reform failures

- Suppose ordering is reform, fiscal, monetary
- Suppose dollarise or join tough monetary union (exogenous low π)
- Now no contemporaneous benefit to reform:
 [π fixed, and fiscal always sets g^e = 0]
- Surprise reform only raises future output
- If sufficiently myopic, growth stagnates
- 3 commitment failures + 1 externality

Lessons for EU entrants

- Inflation targeting the right ECB pillar
- Some kind of SGP is required

- But cyclically adjusted is better

• Structural reform still matters a lot

- Here EU fatigue is not helpful

• Current regimes fine for ERM2

- Provided they avoid exchange rate crises