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Modelling Risk-Weighted Assets: Looking Beyond Stress Tests  

Josef Švéda, Jiří Panoš, Vojtěch Siuda

Abstract 

We propose an improved methodology for modelling potential scenario paths of banks’ risk-

weighted assets, which drive the denominator of capital adequacy ratios. Our approach centres 

on modelling the internal risk structure of bank portfolios and thus aims to provide more 

accurate estimations than the common portfolio level approaches used in top-down stress 

testing frameworks. This should reduce the likelihood of significant misestimation of risk-

weighted assets, which can lead to unjustifiably high or low solvency measures and induce 

false perceptions about banks’ financial health. The proposed methodology is easy to replicate 

and suitable for various applications, including stress testing and calibration of 

macroprudential tools. After the methodology is introduced, we show how our proposed 

approach compares favourably to the methods typically used. Subsequently, we use our 

approach to estimate the potential increase in risk weights due to a cyclical deterioration in 

credit parameters and the corresponding setup of the countercyclical capital buffer for the 

Czech banking sector. Finally, an illustrative, hands-on example is provided in the Appendix.   

 

Abstrakt 

V tomto článku navrhujeme zdokonalenou metodiku pro modelování scénářem podmíněných 

trajektorií rizikově vážených aktiv bank, která ovlivňují hodnotu jmenovatele v ukazatelích 

kapitálové přiměřenosti. Náš přístup se zaměřuje na modelování interní rizikové struktury 

bankovních portfolií a jeho cílem je tak poskytnout přesnější odhady než běžné přístupy na 

portfoliové úrovni běžně používané v top-down zátěžových testech. To by mělo snižovat 

pravděpodobnost výrazně chybného odhadu rizikově vážených aktiv, který může vést  

k neopodstatněně vysokým nebo nízkým ukazatelům solventnosti, a tudíž k mylnému vnímání 

finančního zdraví bank. Navrhovanou metodiku je snadné replikovat a je vhodná pro různé 

aplikace včetně zátěžového testování a kalibrace makroobezřetnostních nástrojů. Po 

představení této metodiky ukazujeme, že kvalita výstupů námi navrhovaného přístupu ve 

srovnání s obvykle používanými metodami vychází příznivě. Poté s využitím tohoto přístupu 

odhadujeme potenciální nárůst rizikových vah v důsledku cyklického zhoršení úvěrových 

parametrů a související nastavení proticyklické kapitálové rezervy pro český bankovní sektor. 

Na závěr v příloze prezentujeme ilustrativní a praktický příklad aplikace představené 

metodiky.   
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Keywords: Countercyclical capital buffer, credit portfolio structure, risk weighted 

exposure, stress-testing.
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1. Introduction 

Significant efforts have been made to improve the financial sector’s stability since the global 

financial crisis (GFC) of 2008. The Basel accords have played a crucial role in strengthening 

banking sector regulation1 as the principles they contain have been gradually implemented into 

national legislations. The stakeholders’ key motivation was to prevent a repeat of the extensive 

socialization of losses that occurred during the GFC and to promote the necessary stability across 

the sectors of the economy by addressing the interconnectedness and negative feedback loops 

observed during the crisis. The banking capital adequacy framework is a crucial regulatory tool for 

measuring banks’ stability. The primary purpose of the framework is to evaluate whether financial 

institutions currently have sufficient capital in relation to the riskiness of their business activities 

in order to ensure they stay solvent. This paper focuses on modelling the riskiness of banking 

portfolios in terms of the risk exposure amount (risk-weighted assets2) for credit risk based on the 

current EU-wide CRR2 regulation.3  

In today’s intricate financial environment, the importance of accurate risk management and 

forecasting cannot be overstated. Capital adequacy remains a critical metric, but on its own, it does 

not offer any insights into possible future developments. For instance, it does not reveal how an 

intense and prolonged crisis may alter the internal structure and risk profile of financial institutions 

or what the potential implications might be for their future solvency position. To assess this, both 

the numerator (the volume of capital) and the denominator (risk-weighted assets) of the capital 

adequacy ratio must be modelled in great detail to achieve sufficient precision (paying due regard 

to the inherent limitations of any modelling approach).  

Risk-weighted assets provide a quantified representation of a bank’s assets adjusted for their 

respective risk levels. The assessment of risk-weighted assets is pivotal not only for banks’ internal 

risk assessments, but also for regulatory bodies tasked with supervising banks and maintaining 

financial stability. Their goal is to ensure that banks hold adequate capital against potential 

unexpected losses. Regulatory requirements prescribe methodologies for calculating risk weights 

and exposure values, which can differ based on factors such as regulatory approach, exposure 

performance, counterparty, collateral and product type. Consequently, risk-weighted assets can 

fluctuate over time. Closely monitoring these developments and estimating future values using a 

range of scenarios is essential. In particular, the evolution of risk-weighted assets is vital for 

regulatory stress testing exercises that assess the resilience of individual financial institutions 

and/or the system as a whole. Moreover, it might be useful for calibrating certain macroprudential 

policy instruments.  

Our paper presents a detailed methodology for estimating risk-weighted assets related to credit risk 

conditional on a selected scenario. Credit risk is by far the most significant source of risk in the 

Czech banking sector. The proposed methodology is easily replicable, as regulatory bodies in the 

EU share the same type of data employed in our approach. Simultaneously, it promotes high 

granularity, which may reduce model risk and potential deviations from actual future outcomes, 

                                                           
1 Although we note the relevant critique of extensiveness made by Haldane (2012). 
2 We call the indicator risk-weighted assets (RWA), as is the norm among practitioners. 
3 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0876  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0876
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i.e. forecasting errors. In the Appendix, we provide a hands-on example, including direct links to 

the supervisory common reporting (COREP) framework with row and column identifiers. This 

promotes transparency and further enhances the replicability of our framework. Furthermore, we 

suggest that our approach offers certain advantages over the portfolio level methods commonly 

employed by regulators. Finally, we showcase how our model can be applied to the calibration of 

macroprudential instruments, providing an example derivation of the absolute capital amount for 

the countercyclical capital buffer (CCyB) to mitigate cyclical fluctuations in risk-weighted assets 

for credit risk.  

A viable approach to estimating the evolution of risk-weighted assets for credit risk uses structural 

form equations anchored directly to the IRB regulatory formulas, which are based on the 

asymptotic single risk factor (ASRF) model. Despite its known limitations, the ASFR model has 

been globally adopted by regulators and financial institutions. As a result, this method is generally 

preferred for risk weight modelling over reduced form estimations. This trend is further supported 

by a lack of sufficiently long time series and the structural approach’s capacity to at least partially 

capture the inherent non-linearities embedded in the regulatory risk weight calculations. 

Furthermore, this approach naturally accounts for regulatory prescriptions specific to performing 

and non-performing exposures. 

Although the existing approaches often disclose only limited specifics, and the granularity of the 

portfolios used is rarely discussed in detail, it appears that risk weights and exposure values are 

predominantly modelled separately in the implementation of IRB formulas using aggregate risk 

data on either the bank or the portfolio level (e.g. Feldkircher et al., 2013, Schmieder et al., 2011, 

Daniëls et al., 2017, Budnik et al., 2020, and ECB, 2023). In contrast, resorting to reduced form 

estimations is not very common, as it can lead to substantial misestimations of risk weights, 

particularly when simulating prolonged crises, as the internal mechanics are generally not 

adequately covered. Nevertheless, reduced form estimation has been adopted in specific contexts 

as a straightforward simplification, such as in bottom-up stress testing (Burrows, 2012). Finally, in 

certain applications, the risk weights are merely shifted by a pre-defined stressed change (Buncic 

et al., 2019).  

In our methodology, we align with the prevailing trend by directly using the regulatory IRB 

formulas. However, instead of employing aggregate risk data as in the conventional supervisory 

stress testing methodologies, we strongly emphasize granular modelling of the internal risk 

structure of banks’ portfolios at the level of individual internal obligor grades. The individual 

grades within portfolios possess distinct risk characteristics. A detailed representation of these risk 

profiles allows for more comprehensive assessment of vulnerabilities and tail risks during the stress 

test. This approach also aims to better capture the inherent non-linearities by enhancing the 

alignment of the scope of modelling between supervisors and supervised institutions. 

Precise modelling of risk-weighted assets may also be of significant importance for appropriate 

calibration of the countercyclical capital buffer (CCyB), which is aimed at bolstering banks’ 

resilience through financial cycles. Notably, risk weights for credit risk are notoriously pro-

cyclical, interwoven with the dynamics of cycles. Consequently, while CCyB adjustments 

traditionally account for credit growth, we believe it is equally important also to consider 

fluctuations in risk weights, which can affect capital requirements and bank robustness. Therefore, 
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we also provide an example of a framework for calibrating the CCyB based on the evolution of risk 

weights using our granular modelling approach, thus extending the contemporary practices. 

The paper is organized as follows. The second section introduces the methodology for estimating 

risk-weighted assets. The third section discusses the model’s performance. The fourth section 

provides an example model application where the evolution of risk-weighted assets during a 

hypothetical downturn is estimated and subsequently used to calibrate the level of the 

countercyclical capital buffer necessary to counteract the reduction in the capital ratio. Finally, the 

last section concludes. 

2. Methodology 

Basel III requires banks to hold a specific amount of capital in relation to their risk exposures. Risk-

weighted assets (RWA), as the denominator of the capital adequacy ratio (CAR), are one of the key 

components used to determine the minimum amount of capital banks must hold to cover their risk: 

 𝐶𝐴𝑅 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑊𝐴
 (1) 

The RWA framework covers multiple types of risk. However, the credit risk area accounts for over 

85% of the total RWA in the Czech banking sector. In the credit risk area, banks are allowed to use 

two main approaches to model credit risk weights: the internal rating based (IRB) approach and the 

standardized (STA) approach. Further, within the IRB approach, we distinguish the advanced IRB 

(A-IRB) approach, the foundation IRB (F-IRB) approach and the supervisory slotting approach. 

An overview of the RWA framework is captured by a stylized diagram in Figure 1 below. 

Figure 1: Risk-Weighted Assets Framework Overview 
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Risk-weighted assets can be decomposed into a product of two principal components – the exposure 

value (EV) and the risk weight (RW): 

 𝑅𝑊𝐴 = 𝐸𝑉 × 𝑅𝑊 (2) 

These two components are often treated separately. Exposure value forecasts are modelled using a 

dedicated satellite model, while risk weights follow a separate procedure.     

Modelling and forecasting risk weights is a complex process. Regulatory formulas involve several 

risk components, which need to be determined before the formulas can be applied. In particular, 

these may include (depending on the regulatory approach) the probability of default (PD) and the 

loss given default (LGD). Our approach focuses predominantly on how these risk parameters can 

be estimated while ensuring an appropriate level of sensitivity to macroeconomic scenarios, and 

how to reflect the forecasted evolution of risk weights at the individual obligor grade levels of each 

portfolio of each bank. 

The fundamental logic of our approach to risk weight modelling is in line with the current best 

practices in the euro area, as described, for example, in Budnik et al. (2020) and ECB (2023). 

However, our paper makes several contributions to the existing frameworks. Unlike the other 

commonly used methods, we model risk weights at the individual obligor level, promoting high 

granularity in risk management practices. The granular approach should lower the model risk and 

provide further insights into potential vulnerabilities and tail risks, and might reduce forecasting 

errors due to better alignment with banking sector data. Furthermore, the methodology is described 

in a sufficiently detailed manner, including a hands-on example with direct links to the COREP 

framework. This fosters transparency and replicability of our approach. Last but not least, we also 

demonstrate a possible model application involving the derivation of the CCyB needed to cover a 

cyclical reduction in the absolute capital requirements during an expansionary phase of the 

financial cycle (see Section 0). This extends the contemporary CCyB calibration practice, which 

focuses solely on the potential credit losses affecting the regulatory capital (the numerator of the 

capital ratio). 

For the purposes of this paper, we estimate the model separately for three portfolios which together 

form the core part of the non-financial private sector (NFPS): (i) loans to non-financial 

corporations, (ii) loans to households secured by residential property and (iii) residual loans to 

households. 

Overall, the estimation of risk-weighted assets is conducted in several steps. First, satellite models 

for the point-in-time risk parameters PD PiT and LGD PiT, together with the growth of the loan 

portfolio, are estimated.4  The satellite models represent the link between the scenario path and the 

impact on banks’ balance sheet items. Second, the accounting structure of the credit portfolio is 

estimated based on the scenario to obtain the conditional dynamics of performing and non-

performing exposures. Third, risk-weighted assets are modelled using the set of upstream outputs 

                                                           
4 Note that in the model application section, we do not use credit growth in our projections, as the CCyB is set for 

the current portfolio only. For stress testing exercises with dynamic balance sheets, however, it should be 

considered. 
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from the previous steps. In the remaining part of this section, we will further explore these 

individual steps in greater detail. 

Satellite Models 

Satellite models are applied to estimate the impact of the macroeconomic scenario path on banks’ 

balance sheet items. A large variety of frameworks are currently employed to estimate PD PiT, 

LGD PiT and credit growth, starting with models based on the Merton approach (Merton, 1974), 

through augmented BMA models such as Panos and Polak (2019a), to large structural models such 

as Gregor and Hejlova (2020). In practice, any suitable PD PiT and LGD PiT models can be applied 

to the individual segments, as this is a standard procedure common to most stress testing 

frameworks. In the case of the Czech National Bank’s (CNB) stress testing exercises, PD PiT for 

“loans to non-financial corporations” are modelled as in Siuda (2020) and those for “loans to 

households secured by residential property” as in Gregor and Hejlova (2020). The residual loans 

to households PDs exhibit a high correlation with the loans secured by residential property PDs, so 

there is no need for comprehensive modelling for the case of the Czech banking portfolio. The path 

is determined by shifting the PDs of loans to households secured by residential property by a 

constant term derived from the long-term relationship between the two variables. For LGD PiT, we 

base our projections for each of the three above-mentioned segments on Gersl et al. (2012). Credit 

growth for the top-down stress testing exercises is modelled according to Plasil (2021). Next, to 

estimate the final path of risk-weighted assets for CCyB estimation purposes presented in the next 

section, we also set the conditional distribution of the parameters using the procedure of Hajek et 

al. (2017). Using this procedure, we can determine less probable but more severe paths of the risk 

parameters that are still consistent with the baseline development of the real economy. We do not 

detail the methodologies for the PD PiT and LGD PiT predictions used in these satellite models, as 

they are well-documented in the aforementioned literature and are not the focus of this paper. 

Modelling the Structure of the Loan Portfolio from the Accounting Perspective 

To model the loan portfolio structure, we closely follow the framework outlined by Panos and 

Polak (2019b), with several specific features. First, the initial transition probability matrices that 

control the movements between stages are calibrated so that the realized default rates closely follow 

the projections from the satellite models. Second, the transition probability matrices are modelled 

with bridge equations, as suggested in Gross et al. (2019). 

As established above, the portfolios considered in this paper cover the whole NFPS for each bank 

in the system. The approach can be extended in the same way to model additional portfolios, but 

for the purposes of Section 0, we will focus solely on NFPS loans. Each portfolio’s initial structure 

of IFRS9 impairment stages and the calibrated transition probability matrices are retrieved from 

the supervisory financial reporting (FINREP) framework. The FINREP framework is also used to 

estimate the bridge equations. Next, the projections from the satellite models are applied to model 

the evolution of the impairment stages for each quarter and each bank’s portfolio, as in Panos and 

Polak (2019b). Subsequently, the outputs of the model are used to project transitions of loans 

between performing and non-performing status in the modelling of risk-weighted assets. For this 

purpose, loans in impairment stages 1 and 2 are treated as performing and those in impairment 

stage 3 as non-performing. 
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Building Initial Risk-Weighted Assets 

The next step focuses on building the starting point risk-weighted assets for credit risk. Before we 

start, it is worth reminding that the credit risk RWAs represent only a part of the denominator used 

to determine capital ratios – the total risk exposure amount (𝑇𝑅𝐸𝐴).5 In the case of the Czech 

banking sector, the risk exposure amount for credit risk (𝑅𝐸𝐴𝐶𝑅) accounts for roughly 87% of 

𝑇𝑅𝐸𝐴. As we focus on just a part of the loan portfolio, only a part of 𝑅𝐸𝐴𝐶𝑅, labelled as 𝑅𝐸𝐴𝐶𝑅
𝑀 , 

is modelled. In particular, we choose only exposure classes connected to the NPFS (see Table 1). 

The rest of 𝑇𝑅𝐸𝐴 is assumed to remain constant. There is, however, no loss of generality, as the 

proportion of loans modelled with our procedure can be easily extended. Overall, 𝑅𝐸𝐴𝐶𝑅
𝑀  makes up 

82% of 𝑅𝐸𝐴𝐶𝑅  and over 71% of 𝑇𝑅𝐸𝐴 in our case. Generally, 𝑅𝐸𝐴𝐶𝑅
𝑀  is the sum of the products of 

the exposure values (EV) and risk weights (RW) for the individual portfolios. Our approach to 

modelling these two components relies on the most granular data available in the regulatory 

common reporting (COREP) framework, i.e. data at the internal obligor grade level. In the 

Appendix, we also provide an illustrative example suggesting how to replicate the methodology 

for stress testing and other purposes. Our hands-on example features detailed references to the 

COREP framework, including the individual rows and columns of each relevant template. For more 

details, see the Appendix.  

First, we set up the initial regulatory portfolio for 𝑅𝐸𝐴𝐶𝑅
𝑀 . To do so, we use data obtained from 

COREP, which provides granular information at the internal obligor grade level within each 

exposure class in the internal ratings-based (IRB) approach portfolio and at the exposure class level 

in the standardized (STA) approach portfolio. Therefore, our approach can be easily replicated 

across the EU countries, as their regulatory bodies share the same reporting standards. Besides the 

exposure value and final risk-weighted exposure amount available for both the IRB and STA 

approaches, the reported data also provide additional items used to derive the final risk weights for 

the internal obligor grades of each exposure class of the IRB approach. The key variables are the 

through-the-cycle probability of default (PD TTC), the downturn loss given default (LGD DT) and 

the average maturity (𝑀).6 For simplicity, we often refer to the first two parameters simply as PD 

and LGD. Using these risk parameters, we can derive a calculated risk weight 𝑅𝑊𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 for 

each internal obligor grade within each IRB portfolio and bank, as shown later in this section.  

Next, we determine the implied risk weight by simply taking the ratio of the reported risk-weighted 

exposure amount to the reported exposure value: 

𝑅𝑊𝐼𝑚𝑝𝑙𝑖𝑒𝑑 =
𝑅𝑊𝐴

𝐸𝑉
 

(3) 

Finally, we calculate the ratio 𝜙 of the implied risk weight to the calculated risk weight: 

                                                           
5 Sometimes generally denoted as RWA for simplicity (as, for example, in Equation 1). 
6 The PD TTC parameter captures a borrower’s credit risk over an entire economic cycle, including both 

downturns and upturns. Unlike PD PiT, which varies with short-term conditions, PD TTC should provide a more 

stable, long-term view of default risk. The LGD DT parameter represents the potential loss a bank might face on 

a defaulted loan during adverse economic conditions or downturns. It should be higher than LGD PiT at most 

times because recoveries are expected to be lower in challenging economic times. Note that while in the A-IRB 

approach, the banks themselves are responsible for modelling LGD DT, in the F-IRB approach these risk 

parameters are prescribed by CRR2.  
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𝜙 =
𝑅𝑊𝐼𝑚𝑝𝑙𝑖𝑒𝑑

𝑅𝑊𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
 

(4) 

The ratio 𝜙 captures in particular non-linearities stemming from the aggregation of individual 

obligors within a given grade (for more detail on aggregation, see the hands-on example in the 

Appendix). This effect is especially significant for lumpy portfolios, such as financial institutions, 

where each institution within a given grade has typically assigned its own PD and LGD. As a 

consequence, the calculated and implied risk weights tend to be different and 𝜙 thus deviates from 

1. In contrast, the same PD and LGD is typically assigned to the whole pool of obligors within a 

single grade for many retail portfolios. In such cases, the calculated and implied risk weights match 

almost perfectly, i.e. 𝜙 ≈ 1. In addition, 𝜙 might also capture other adjustments banks apply when 

calculating the final risk weight which are not sufficiently captured by the reporting framework and 

thus cannot be considered in the calculation.7 The ratio 𝜙 is stored and later applied to scale the 

risk weight projections to account for non-linearities and additional adjustments as described 

above.  

Parameter 𝜙 is essential to ensure that the actually reported and model starting points RW (and 

RWA) are fully aligned, which is necessary for any kind of stress testing or macroprudential policy 

calibration exercise. A similar calculation for 𝜙 as in Equation 4 can also be made under the 

aggregated portfolio level approach to align the starting points. However, as shown in Equation 5 

below, the RW function is a non-linear multivariate function and thus can behave very differently 

in different areas of the function domain. This might result in substantial misestimations of risk 

weight projections when the values of 𝜙 deviate significantly from 1, even with matching starting 

points. Consequently, to achieve optimal results, it is vital to ensure that the implied and calculated 

starting point risk weights converge as closely as possible, ideally pushing 𝜙 near to 1.  

The formulas used to determine 𝑅𝑊𝐴𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 are conceptually based on Merton’s model 

application by Vasicek (2002), commonly known as the asymptotic single risk factor (ASRF) 

model. The ASRF model has been central to the IRB approach to credit risk in the Basel 

frameworks since its introduction within Basel II (the original concept is presented in BCBS, 2005). 

The model simplifies credit risk by assuming it is driven by a singular systematic factor. While this 

model enhances risk sensitivity compared to the STA approach, it has inherent drawbacks. 

Specifically, its reliance on a single risk factor may oversimplify risks and may not capture nuanced 

influences on credit portfolios stemming from other risk factors. There are also concerns regarding 

its pro-cyclicality, which might inadvertently amplify economic cycles. Nonetheless, despite these 

limitations, regulators and financial institutions globally have adopted the ASRF model due to its 

relative sophistication, its ability to use internal data for more tailored risk weightings and its 

potential regulatory capital benefits. For these reasons, the ASFR model is also central to our 

approach to IRB modelling, as we aim to align the core logic of the RWA calculations with those 

of the regulated banks. 

In particular, the calculations of risk weights for each performing internal obligor grade within IRB 

portfolios8 are based on the following formula prescribed by the CRR2 regulation:  

                                                           
7 For example, banks must apply a correlation multiplier for large (over EUR 70 billion in total assets) or 

unregulated financial entities, and in the case of companies with total annual sales below EUR 50 million, banks 

can adjust the correlation coefficient for a given company by a term dependent on its total annual sales. 
8 The formulas are identical for both the foundation IRB (F-IRB) and the advanced IRB (A-IRB) approaches. 
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𝑅𝑊𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =

(

 𝐿𝐺𝐷 × 𝑁

{
 

 
1

√(1 − 𝑅(𝑃𝐷))

× 𝐺(𝑃𝐷) +   √
𝑅(𝑃𝐷)

1 − 𝑅(𝑃𝐷)
× 𝐺(0.999) 

}
 

 

− 𝐿𝐺𝐷 × 𝑃𝐷

)

  

× 𝑍(𝑀, 𝑃𝐷) × 1.06 × 12.5 × 𝑆𝑀𝐸 𝑆𝑃 

(5) 

where 𝑁{𝑋} is the cumulative distribution function for a standard normal random variable, 𝑅(𝑃𝐷) 

is the coefficient of correlation dependent on 𝑃𝐷, 𝐺{𝑋} is the inverse cumulative distribution 

function for a standard normal random variable, 𝑍(𝑀, 𝑃𝐷) is the maturity adjustment dependent 

on maturity 𝑀 and 𝑃𝐷, and 𝑆𝑀𝐸 𝑆𝑃 is the small and medium-sized enterprises (SME) supporting 

factor.  

The particular form of the 𝑅(𝑃𝐷) equation depends on the given exposure class. In general, for 

exposures to corporates, institutions, central governments and central banks, the formula takes the 

following form: 

 𝑅(𝑃𝐷) =  0.12 ×
1 − 𝑒−50×𝑃𝐷

1 − 𝑒−50
+ 0.24 × ( 1 −

1 − 𝑒−50×𝑃𝐷

1 − 𝑒−50
) (6) 

As mentioned above, this formula can be further adjusted depending on various factors. For 

instance, for large or unregulated financial sector entities, 𝑅(𝑃𝐷) is additionally multiplied by 1.25. 

In contrast, for companies with total annual sales below EUR 50 million, 𝑅(𝑃𝐷) is reduced by the 

term: 

 0.04 × (1 −
𝑚𝑖𝑛(𝑚𝑎𝑥(5, 𝑆), 50) − 5 ) 

45
) (7) 

where 𝑆 is total annual sales in millions of EUR. However, COREP reporting does not allow for 

determining for what exposure volume in which specific grades these adjustments were applied; 

therefore, we abstract from it in our approach. 

For retail exposures, the correlation coefficient takes the following form: 

 𝑅(𝑃𝐷) = 0.03 ×
1 − 𝑒−35×𝑃𝐷

1 − 𝑒−35
+ 0.16 × ( 1 −

1 − 𝑒−35×𝑃𝐷

1 − 𝑒−35
). (8) 

The exceptions are qualified revolving exposures, where 𝑅(𝑃𝐷) = 𝑅 = 0.04, and exposures 

secured by immovable property collateral, where 𝑅(𝑃𝐷) = 𝑅 = 0.15. In contrast to the special 

cases for financial sector entities and companies with total annual sales below EUR 50 million, we 

consider the special cases for qualified revolving exposures and exposures secured by immovable 

property in our approach, as they are reported separately. 

The maturity adjustment 𝑍(𝑀, 𝑃𝐷) is simply 𝑍 = 1 for all retail exposures. In all other cases, it 

takes the following form: 

 𝑍(𝑀, 𝑃𝐷) =
1 + (𝑀 − 2.5) × 𝑏(𝑃𝐷)

1 − 1.5 × 𝑏(𝑃𝐷)
, (9) 

where 𝑏 is the maturity adjustment factor calculated as follows: 
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 𝑏(𝑃𝐷) = (0.11852 –  0.05478 × ln(𝑃𝐷))2. (10) 

Note that, under CRR2, 𝑆𝑀𝐸 𝑆𝑃 ranges between 0.7619 and 0.85 when the counterparty is a small 

or medium-sized enterprise to counterbalance the rise in capital resulting from the capital 

conservation buffer. The exact value depends on the total amount of the exposure to the bank. We 

determine the 𝑆𝑀𝐸 𝑆𝑃 values for each obligor grade, exposure class and bank from the ratio of the 

reported RWA after and before applying the SME supporting factor. The resulting parameters thus 

represent the average of the 𝑆𝑀𝐸 𝑆𝑃 values applied by the bank for individual obligors within each 

grade. It follows that the ratio is equal to 1 when no SME exposures are present.  

A different methodology for calculating risk weights is prescribed for non-performing exposures 

within the IRB approach. In the foundation IRB (F-IRB) approach, the risk weight for non-

performing exposures always equals 0. In the advanced IRB (A-IRB) approach, the formula takes 

the form 

      𝑅𝑊 = max(𝐸𝐿𝐵𝐸 − 𝐿𝐺𝐷; 0) (11) 

where 𝐸𝐿𝐵𝐸 is the expected loss best estimate. In our approach, we assume a constant spread 

between LGD and 𝐸𝐿𝐵𝐸, resulting in constant projections for the risk weights for A-IRB non-

performing exposures.  

We also need to set up the risk weights applied to STA portfolios and portfolios under the 

supervisory slotting approach.9 For each STA exposure class, the ratio 𝑅𝑊𝑖𝑚𝑝𝑙𝑖𝑒𝑑 of the risk 

exposure amount to the exposure value is calculated as in Equation 3, and this value is kept stable 

for the whole scenario period. Thus, we do not consider a credit deterioration within STA exposure 

classes, and the overall STA risk weight dynamics stem only from the evolution of the exposure 

values in the individual portfolios. This also holds for STA non-performing exposures and 

supervisory slotting portfolios. This represents one of the potential weaknesses of our approach, as 

STA risk weights also tend to show some sensitivity to the macroeconomic scenarios due to the 

internal portfolio structure dynamics caused, for example, by migrations between credit quality 

steps. A possible way to model STA risk weights is outlined in ECB (2023). We are also 

considering adding more detailed STA modelling to our framework in future updates. 

As part of this step, we need to establish a connection between the accounting and the regulatory 

loan portfolio (see Table 1). This will facilitate PD, LGD and exposure value scenario development. 

To do so, we need to map the set of counterparties from the accounting perspective (based on the 

FINREP framework) to the collection of regulatory IRB and STA exposure classes (based on the 

COREP framework). Although some minor misspecification may occur, the mapping procedure 

presented below provides a robust outcome in terms of exposure values assigned at the level of the 

whole banking sector. We also cross-checked the matched portfolios and classes with the 

AnaCredit database, and the established links were reaffirmed. 

  

                                                           
9 Supervisory slotting is used to calculate risk weights for certain specialized lending exposures. The logic of the 

calculations is similar to that for STA exposures. 
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Table 1: FINREP and COREP Mapping Set 

Portfolio used in FINREP Assigned exposure class from COREP 

Loans to non-financial 

corporations 

- Corporate – SME (IRB Approach) 

- Corporate – Specialized lending (IRB Approach) 

- Corporate – Other (IRB Approach) 

- Claims on institutions and corporates with a short-term credit assessment (STA 

Approach) 

- Exposures to corporates (STA Approach) 

- Items associated with particularly high risk (STA Approach) 

Loans to households secured by 

residential property 

- Retail – Secured by immovable property SME (IRB Approach) 

- Retail – Secured by immovable property non-SME (IRB Approach) 

- Exposures secured by mortgages on immovable property (STA Approach) 

Residual loans to households - Retail – Qualifying revolving (IRB Approach) 

- Retail – Other SME (IRB Approach) 

- Retail – Other non-SME (IRB Approach) 

- Retail exposures (STA Approach)  

Modelling the Risk Weights and Exposure Values of the Regulatory Portfolio 

This step builds on the estimated loan portfolio structure from the accounting perspective together 

with the initial risk weights constructed in the previous step and projects the evolution of the risk-

weighted assets for credit risk. In the previous section, we presented formulas for calculating the 

initial risk weights.  

The IRB risk weights depend strongly on banks’ estimates of PD (for both the A-IRB and F-IRB 

approaches) and LGD (for the A-IRB approach only, as in the F-IRB approach, the LGD values 

are prescribed by the regulator). While these parameters were originally intended to be stable, 

empirical evidence shows that PD values, in particular, fluctuate over time, often being constructed 

as moving averages of one-year PD PiT with a minimum 5-year window (as allowed by CRR2). 

Thus, to model the PD and LGD parameters which can be used to estimate the scenario-conditional 

risk weight evolution, we need to link their dynamics to those of the macroeconomic variables. To 

achieve this, we take advantage of the PD PiT and LGD PiT parameters already estimated via the 

satellite models in the first step of the process.  

To estimate the PD values, we use PD PiT10 to construct 36-quarter (9-year) moving averages 

representing satellite through-the-cycle variables labelled as 𝑃𝐷 𝑇𝑇𝐶𝑆𝐴𝑇 . The optimal window 

length was set based on the correlations with the historical PD values and reaffirmed with 

supervisory experts at the Czech National Bank. The shifts of PD in time are generated via the 

distance-to-default (𝐷𝑡𝐷) transformation using the inverse CDF of the standardized normal 

                                                           
10 Note that for this purpose, the PD PiT values need to represent the 12-month probability of default. Since we 

estimate the parameters as 3-month variables, they are converted via the following transformation to 12-month 

values: 𝑃𝑖𝑇 𝑃𝐷𝑡 = 1 − ∏ (1 − 𝑃𝑖𝑇 𝑃𝐷𝑡+𝑖)
3
𝑖=0 . 
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distribution. The 𝐷𝑡𝐷 transformation for PD is thus, in principle, equivalent to the probit 

transformation, and for any time 𝑡, it is generally defined as: 

 𝐷𝑡𝐷𝑡 = 𝛷
−1(𝑃𝐷𝑡) (12) 

The shift of PD for each performing internal obligor grade 𝑖 of an exposure class at time 𝑇𝑛 is then 

defined as:  

 𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖 = 𝛷 (𝛷−1(𝑃𝐷𝑇0

𝐺𝑟𝑎𝑑𝑒 𝑖) + 𝛷−1(𝑃𝐷 𝑇𝑇𝐶𝑇𝑛
𝑆𝐴𝑇) − 𝛷−1(𝑃𝐷 𝑇𝑇𝐶𝑇0

𝑆𝐴𝑇)) (13) 

where parameters at 𝑇0 represent the starting point values. This approach is employed quite often 

in stress test modelling when dealing with bounded variables. The 𝐷𝑡𝐷 transformation has the 

advantage of shifting low values proportionally more than high values and ensures that values stay 

within the (0,1) interval, which is essential given the probabilistic nature of PDs.  

The downturn LGD for each internal obligor grade 𝑖 within the A-IRB approach is determined 

based on the absolute values of LGD PiT. According to the guidelines provided by the European 

Banking Authority (EBA, 2019), the downturn LGD should not be lower than the corresponding 

PiT LGD values. To adhere to this guidance, we construct a downturn LGD satellite series that, at 

each time point, represents the maximum value between the initial exposure value (EV) weighted 

average of the downturn LGDs (𝑤𝐿𝐺𝐷𝑇0) and the maximum value of LGD PiT over the projection 

horizon until the given time point. It is important to note that this newly constructed series is non-

decreasing, as per the EBA guidelines. The resulting series is then used in a manner similar to the 

𝑃𝐷 𝑇𝑇𝐶𝑆𝐴𝑇 approach: 

 

𝐿𝐺𝐷 𝐷𝑇𝑇𝑛
𝑆𝐴𝑇 = max(𝑤𝐿𝐺𝐷 𝐷𝑇𝑇0;max({𝐿𝐺𝐷 𝑃𝑖𝑇𝑡: 𝑡 = 𝑇0, 𝑇1, … , 𝑇𝑛})) 

𝑤𝐿𝐺𝐷 𝐷𝑇𝑇0 =
∑ 𝐸𝑉𝑇0

𝐺𝑟𝑎𝑑𝑒 𝑖 × 𝐿𝐺𝐷𝑇0
𝐺𝑟𝑎𝑑𝑒 𝑖𝑛

𝑖

∑ 𝐸𝑉𝑇0
𝐺𝑟𝑎𝑑𝑒 𝑖𝑛

𝑖

 

𝐿𝐺𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖 = 𝛷 (𝛷−1(𝐿𝐺𝐷𝑇0

𝐺𝑟𝑎𝑑𝑒 𝑖) + 𝛷−1(𝐿𝐺𝐷 𝐷𝑇𝑇𝑛
𝑆𝐴𝑇) − 𝛷−1(𝐿𝐺𝐷 𝐷𝑇𝑇0

𝑆𝐴𝑇)) 

(14) 

To better illustrate our approach to converting the PiT risk parameters estimated by the satellite 

models to risk parameters that can be used for the RW calculations, Figure 2 shows stylized 

dynamics for PD and LGD. 

Figure 2: Stylized Through-the-Cycle PD and Downturn LGD Dynamics 
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The downturn LGDs for the F-IRB approach are prescribed by regulation (CRR2) and depend inter 

alia on the classification and seniority of the exposures. Thus, we keep the starting point LGDs for 

F-IRB portfolios constant throughout the period modelled. 

The resulting PD and LGD for each internal obligor grade are plugged into the regulatory RW 

formula, which is then multiplied by the corresponding 𝜙𝐺𝑟𝑎𝑑𝑒 𝑖 calculated in the previous step. In 

this way, we obtain the evolution of the risk weights in the given internal obligor grade starting 

from the initial point 𝑅𝑊𝑇0
𝐺𝑟𝑎𝑑𝑒 𝑖  exactly matching the 𝑅𝑊𝐼𝑚𝑝𝑙𝑖𝑒𝑑

𝐺𝑟𝑎𝑑𝑒 𝑖 reported by the bank. The risk 

weight 𝑅𝑊𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖 at time 𝑇𝑛 for each internal obligor grade thus takes the following form: 

𝑅𝑊𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖 = (𝐿𝐺𝐷𝑇𝑛

𝐺𝑟𝑎𝑑𝑒 𝑖 × Ψ(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖) − 𝐿𝐺𝐷𝑇𝑛

𝐺𝑟𝑎𝑑𝑒 𝑖 × 𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖) × 𝑍(𝑀𝐺𝑟𝑎𝑑𝑒 𝑖 , 𝑃𝐷𝑇𝑛

𝐺𝑟𝑎𝑑𝑒 𝑖) 

× 1.06 × 12.5 × 𝑆𝑀𝐸 𝑆𝑃 × 𝜙𝐺𝑟𝑎𝑑𝑒 𝑖  
 

Ψ(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖) = 𝑁

{
 

 
1

√(1 − 𝑅(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖))

× 𝐺(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖) +   √

𝑅(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖)

1 − 𝑅(𝑃𝐷𝑇𝑛
𝐺𝑟𝑎𝑑𝑒 𝑖)

× 𝐺(0.999) 

}
 

 

 

(15) 

For the non-performing IRB internal obligor grades, the risk weights are kept constant throughout 

the scenario period. This is, in fact, a conservative assumption, as the distance between 𝐸𝐿𝐵𝐸 and 

the downturn LGD for defaulted exposures is actually expected to decrease in times of crisis. 

Similarly, for the individual STA exposure classes and supervisory slotting exposures, the risk 

weights also stay constant throughout the scenario horizon. Historical evidence from the Czech 

banking sector partially supports this approach, as the aggregate STA risk weights vary just slightly, 

mostly due to changes in the portfolio structure.  

Besides the risk weights, to estimate the risk-weighted assets, we must also estimate the exposure 

value dynamics throughout the scenario period. As the overall evolution of the loan portfolio from 

the accounting perspective is already known, we can use the link established between the 

accounting and regulatory perspectives (see Table 1). For each scenario period, a percentage 

change to the starting point of the accounting portfolio loan value is allocated to the corresponding 

regulatory exposure classes proportionally across the obligor grades. This results in a stable internal 

structure of each portfolio regarding the distribution of the exposure value across the obligor grades 

(for more details, see the example in the Appendix). Note that we project the performing and non-

performing volumes separately. For this purpose, impairment stages 1 and 2 are treated as 

performing and impairment stage 3 as non-performing. In addition, the exposure values for IRB 

portfolios and supervisory slotting are estimated in gross terms, while for STA portfolios they are 

estimated net of corresponding provisions (as prescribed by the regulation).   

At this stage, we have calculated the scenario paths for both the risk weights and the exposure 

values. We multiply both values (see Equation 2) to obtain the risk-weighted assets for each internal 

obligor grade in the IRB approach and for each exposure class in the STA approach and then sum 

all the RWA projections to obtain 𝑅𝐸𝐴𝐶𝑅
𝑀  for each period. In the final step, we add the constant 

terms for the non-modelled part of 𝑅𝐸𝐴𝐶𝑅 (labelled as 𝑅𝐸𝐴𝐶𝑅
𝑁𝑂𝑁−𝑀) and the risk exposure amounts 

for other risks (𝑅𝐸𝐴𝑂𝑡ℎ𝑒𝑟) to get the final 𝑇𝑅𝐸𝐴 for each bank and scenario period: 
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𝑇𝑅𝐸𝐴𝑇𝑛 = 𝑅𝐸𝐴𝐶𝑅,𝑇𝑛

𝑀 + 𝑅𝐸𝐴𝐶𝑅
𝑁𝑂𝑁−𝑀 + 𝑅𝐸𝐴𝑂𝑡ℎ𝑒𝑟

⏞              
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠

 (16) 

The Appendix provides a detailed hands-on example of applying the methodology described in this 

section with fictitious data points and with references to the COREP templates. 

3. Model Performance 

Evaluating the performance of a model is integral to ensuring its reliability, efficacy and 

applicability in real-world contexts. Such an assessment not only sheds light on the strengths and 

weaknesses of the model, but also provides valuable insights into its robustness amidst various 

uncertainties. Testing the model also allows us to develop a better understanding of its limitations 

and can guide us regarding further enhancements. In this section, we first evaluate the convergence 

of the ratio 𝜙 to 1 (see Equation 4), as this convergence is one of the key features of our proposed 

methodology. Second, we use banks’ submissions from the supervisory stress test to assess the 

model’s ability to capture the evolution of risk weights during an economic downturn. 

Our methodology relies on using obligor grade level data available in the COREP reporting 

framework. By aligning the granularity of our approach more closely with banks’ calculations, we 

can expect a significant narrowing of the gap between 𝑅𝑊𝐴𝑖𝑚𝑝𝑙𝑖𝑒𝑑 and 𝑅𝑊𝐴𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑   compared 

to conventional portfolio level approaches. Such convergence should drive 𝜙 towards 1. Our testing 

confirms these expectations. Although the values across banks and portfolios may vary, we 

achieved an average reduction of the absolute gap between 𝜙 and 1 of approximately 76%11 across 

the sample, a notable improvement over the portfolio level benchmark model. Furthermore, the gap 

was reduced for essentially all banks and portfolios, underscoring that the proposed methodology 

provides consistently better alignment.   

The capability of our model regarding 𝑅𝑊𝐴𝑖𝑚𝑝𝑙𝑖𝑒𝑑 and 𝑅𝑊𝐴𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑   convergence is further 

explored in Figure 3. The left panel presents a scatterplot of 𝑅𝑊𝐴𝑖𝑚𝑝𝑙𝑖𝑒𝑑 and 𝑅𝑊𝐴𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑   

against the axis of the first quadrant. While several outliers can be detected, the vast majority of 

the portfolios, particularly those of households, align almost perfectly. This is confirmed by the 

estimated kernel densities depicted in the right panel, where the 𝜙 ratios for household portfolios 

are strongly concentrated around 1. The average 𝜙 ratio for household portfolios stands at 1.01, 

with the absolute gap reduced by approximately 95%. For multiple reasons outlined in the previous 

section, NFC portfolios generally exhibit a less precise match, resulting in a considerably wider 

kernel density and an average 𝜙 ratio of 0.97. The reduction of the absolute gap exceeds 68% in 

comparison to the portfolio level benchmark model in the NFC portfolio case. Although this is  

a less pronounced improvement than for the household portfolios, it remains substantial. 

  

                                                           
11 This also includes non-NFPS portfolios like institutions or central banks and central governments. 



Modelling Risk-Weighted Assets: Looking Beyond Stress Tests 15 

 

 
 
 

Figure 3: Assessing Convergence between 𝑹𝑾𝑨𝒊𝒎𝒑𝒍𝒊𝒆𝒅 and 𝑹𝑾𝑨𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅  by NFPS 

Portfolios 

𝑅𝑊𝐴𝑖𝑚𝑝𝑙𝑖𝑒𝑑 versus 𝑅𝑊𝐴𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  (in per cent) Kernel densities of 𝜙 ratios 

  

Note:  Both charts are based on individual obligor grade level data. The kernel densities in the right panel 

are scaled such that the maximum value on the vertical axis is 1. The value of the smoothing 

parameter is 1.25 and 15 for the non-financial corporations and household portfolios respectively. 

In the next part, we focus on evaluating the performance of our approach in the context of the Czech 

National Bank’s supervisory bottom-up stress testing exercise. Given the historical data constraints, 

marked by a predominance of “good times” and a lack of extended trends, traditional quasi-out-of-

sample forecasts are deemed inappropriate for this exercise. By analysing banks’ projections 

disclosed during the stress tests, we assess the model’s ability to capture more pronounced risk 

weight shifts, particularly during periods of elevated macroeconomic stress. 

The data were sourced from the 2023 supervisory bottom-up stress testing exercise, with the 

participation of 12 out of the 15 banks in the Czech banking sector, representing approximately 

99% of total bank assets. This exercise resembles the EU-wide stress test conducted by the 

European Banking Authority, adopting similar templates and methodology in general. Participating 

banks were tasked to assess the impact of the baseline and adverse macroeconomic scenarios on 

their capital and RWAs from 2022 to 2025. We extracted average point-in-time (PiT) values for 

PD and LGD for each asset class disclosed. These served as input data for projecting RWAs using 

our proposed model. The derived projections were then compared against the banks’ original 

disclosures.12 Due to the confidential nature of the data, the results provided are restricted to the 

aggregate level. 

To comprehensively assess our model’s performance, we contrast its results with two benchmark 

models that use fully aggregated data, disregarding the internal obligor grade portfolio structure. 

                                                           
12 In practical terms, this means we used the satellite models of the participating banks rather than those of the 

Czech National Bank (CNB). This approach aligns with our primary objective of assessing the efficacy of the 

proposed granular RWA modelling method, rather than testing the performance of the CNB’s established satellite 

models. Furthermore, consistent with the bottom-up supervisory exercise, a static balance sheet was assumed. 
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Similarly to our approach, these benchmarks combine the average PiT values from the disclosures 

with historical the PiT time series to construct a satellite through-the-cycle (TTC) time series of 

PDs and corresponding downturn LGDs. These time series were then employed as inputs to 

calculate benchmark risk weights using the corresponding IRB formulas and scaled by parameter 

𝜙 on the portfolio level to match the starting point risk weights reported by banks. 

Notably, the two benchmark models differ in their approach to the downturn LGD calculations. 

While Benchmark Model 1 (BM1) follows the methodology for LGD DT suggested in the previous 

section, Benchmark Model 2 (BM2) adopts the through-the-cycle approach, in line with Article 181 

of CRR2, as previously used by the Czech National Bank. The downturn LGD series in this case 

is calculated from LGD PiT as a 9-year moving average. The results are compared for the IRB non-

defaulted portfolios only, as the risk weights stay constant in other cases. 

Figure 4 illustrates the starting point risk weights (for 2022) and the estimated risk weight paths 

(for 2023–2025) for the NFPS portfolios considered. The figure shows bank disclosures, our 

proposed model and the two benchmarking models. Upon visual examination alone, it is evident 

that our proposed granular method consistently offers more reliable outcomes in terms of the 

overall risk weight level. Combined, the bank disclosures suggest an increase in risk weights of 

6.5 pp in the baseline scenario and 17.9 pp in the adverse scenario. The corresponding outcomes 

for the baseline and adverse scenarios respectively are 3.9 pp and 13.9 pp for the proposed model, 

1.2 pp and 9.9 pp for BM1 and -2.8 pp and 6.3 pp for BM2. This represents a reduction in the 

overall estimation error for the adverse scenario at the end of the stress test horizon – commonly 

the most scrutinized value in stress testing exercises – of 50.4% compared to BM1 and of 65.5% 

compared to BM2 (with BM2 reflecting the methodology originally used by the CNB). 

Figure 4: Evolution of Risk Weights Combined and by NFPS Portfolios (in percent) 

  

 
Note:  The figure presents the risk weights of the IRB non-defaulted portfolio for sub-groups of loans to 

non-financial private sector. The “Bank disclosures” series were reported by banks in the 2023 

supervisory stress test exercise. They represent the evolution of risk weights based on the baseline 

and adverse macroeconomic scenarios. The “Model” series represent our model, and “Benchmark 

Model 1” and “Benchmark Model 2” are the alternative approaches. Optimally, the values should 

be close to the bank disclosures. The right-hand scale shows the risk weights for loans to 

households secured by residential property. 
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In addition, we look at the root mean square error (RMSE) statistics, calculated as: 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑊𝑇𝑖

𝐵𝐴𝑁𝐾 − 𝑅𝑊𝑇𝑖
𝑀𝑂𝐷𝐸𝐿)𝑁

𝑖=0

2

𝑁 + 1
 

(17) 

Although the RMSE may not be directly interpretable, larger forecasting errors across the time 

horizon will yield higher RMSE values. Thus, it is more convenient to compare the RMSE values 

of our model in relative terms against the alternatives introduced. In combined terms, the reduction 

in the RMSE for the adverse scenario stands at 34.1% relative to BM1 and 52.8% relative to BM2. 

When averaged across portfolios and scenarios, it amounts to 30.5% compared to BM1 and 56.3% 

compared to BM2. The biggest improvements are observed for loans to households secured by 

residential property, while the smallest are seen for residual loans to households. 

Furthermore, to provide a clearer insight into the distributional characteristics across the bank 

sample, we present box plots of the end-of-period (2025) distributions of risk weights for the 

individual NFPS portfolios (see Figure 5). These distributions align reasonably well, underscoring 

the validity of our granular approach to RW estimation. 

However, while we observe the significant improvements demonstrated above, we still notice 

systematic underestimation of the modelled risk weights against those reported by banks. The 

Pearson and Spearman correlation coefficients between the bank disclosures and our model outputs 

are both very high, standing at 99.8% and 98.8% respectively. However, the slope coefficient of 

the OLS regression of our model outputs on bank disclosures without an intercept is significantly 

below 1, at 0.973, with the upper bound of the 99% confidence interval at 0.983. This can be seen 

visually in Figure 6, where we observe that the majority of the model outputs lie below the first 

quadrant axis. 

Figure 5: Terminal Risk Weight Distribution by NFPS Portfolios (in percent) 
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Figure 6: Bank Disclosures Compared with Model Values (in percent) 

 

Several factors could account for this observed underestimation. First, the remaining non-linearities 

and exceptional cases outlined in the previous section might not be entirely captured even by the 

granular model. Second, our model may not perfectly represent the relationship between the point-

in-time risk parameters and the PDs and LGDs used in the RWA calculations, as the general 

approach may not be entirely accurate for certain banks. Third, the dynamics of the risk parameters 

and exposure values at the internal obligor grade level are ultimately driven by the underlying 

portfolio level satellite models, which might limit the ability to capture different dynamics across 

the individual obligor grades within a single portfolio. In addition, our approach inherently assumes 

a static internal structure for each portfolio. While we consider dynamic exposure values, the 

changes are proportionally allocated across the obligor grades, preserving the portfolio’s internal 

structure, with no allowance for migration between obligor grades. This contrasts with real-world 

scenarios, where the portfolio structure can evolve due to creditworthiness shifts, leading to obligor 

migrations between grades during economic downturns. However, integrating a robust approach 

for transitions between obligor grades would be extremely challenging given the lack of suitable 

data. In any case, additional comprehensive testing and research will be necessary to understand 

the precise nature of this systematic underestimation. Such insights will be invaluable in further 

enhancing and refining our modelling framework.  

4. Model Application – Calibrating the Countercyclical Capital Buffer 

Our proposed approach, as shown in the previous section, is suited to a range of stress testing 

applications within the banking sector. In addition, regulators can tailor it to their needs, as it is 

founded on the reporting standards used across the EU. We see two potential uses for our proposed 

approach. First, it can clearly serve as an effective building block for stress testing toolkits. Second, 

the model also offers utility for macroprudential policy objectives, for instance to counter the pro-

cyclicality of capital requirements due to the cyclical nature of risk weights. Mechanisms such as 

the countercyclical capital buffer (CCyB) can be calibrated to offset these fluctuations to ensure a 

stable capital requirement through the financial cycle. We begin by providing the reasoning for 

such actions. Next, we detail the data used, and, finally, we conclude with a summary and a 

potential recalibration of the CCyB. As we are dealing with confidential data, we only provide 

aggregate data.  
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Countercyclical Capital Buffer and Risk-Weighted Assets 

The main goal of the CCyB is to reduce pro-cyclicality in the banking sector and improve the 

resilience of banks across financial cycles. International authorities recommend using the CCyB to 

protect the banking sector from system-wide risks built up in periods of excessive credit growth in 

the non-financial private sector (see, for example, BCBS, 2010, and ESRB, 2018). Such risks can 

lead to significant credit losses during downturns. In other words, the CCyB should be raised during 

the expansion phase of the financial cycle, when risks accumulate, and released during turmoil, 

when risks materialize. This will help maintain the supply of credit to the real economy and reduce 

the downswing of the financial cycle. 

In a broader view, there are various manifestations of the financial cycle other than credit growth 

that affect banks’ resilience, including the evolution of risk weights. When modelling risk-weighted 

assets, special attention is typically given to the calculation of internal ratings-based (IRB) risk 

weights. As demonstrated in the previous sections, the value of IRB risk weights is determined 

primarily by the probability of default (PD) and loss given default (LGD) risk parameters. These 

risk parameters can be strongly correlated with financial cycles and the risk weights are thus 

inherently pro-cyclical, as also evidenced, for example, by banks’ adverse scenario disclosures in 

Figure 4.  

The pro-cyclicality of risk weights has been confirmed by other research studies, including EBA 

(2016), Montagnoli et al. (2018) and ECB (2009), and, in the case of the Czech banking sector, 

Malovana (2018) and Broz and Pfeiffer (2019). While the regulations attempt to reduce the pro-

cyclical behaviour of risk parameters by using through-the-cycle and downturn parameters 

(Articles 180 and 181 of CRR2) instead of the point-in-time (PiT) parameters used for IFRS9 

provisioning, some cyclicality usually persists.13 To counter the persisting pro-cyclicality, the 

current debate in Europe is focused on the possible application of output floors relative to STA 

portfolios (BCBS, 2015). However, such amendments only solve the long-term decrease in IRB 

risk weights relative to the STA requirements, not the cyclical dynamics themselves. Moreover, 

since 2021, the EBA has required the inclusion of a mixture of both “good” and “bad” economic 

periods in estimating risk parameters for calculating risk weights (EBA, 2017). Nevertheless, the 

definition of “bad” periods and how they should be mixed with “good” ones in the estimation 

sample remains rather vague. In this section, we will show an alternative yet effective way of 

countering the pro-cyclicality of risk weights using the outputs from our model. 

During the expansion phase of the financial cycle, credit risks accumulate not only as a result of 

extensive credit growth, but also due to undesired changes in risk weights and a resulting decrease 

in the capital requirements (caused by a reduction in the denominator of the capital ratio; see 

Equation 1), which might further reduce the resilience of banking sector. A downswing in the 

financial cycle is then likely to be accompanied by elevated credit risk losses. If loan loss provisions 

are not sufficient to cover the losses (i.e. if the realized losses exceed the expected losses), they 

must be absorbed by the available capital, which will have a direct negative effect on the capital 

position (by reducing the numerator of the capital ratio). At the same time, large credit losses 

(manifested by increased PD PiT and LGD PiT) will correspondingly result in a gradual increase 

                                                           
13 For example, the data window for deriving PD TTC may be shorter than the expansion phase of the financial 

cycle, characterized by low PD PiT. 
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in PD TTC and potentially also LGD DT. This will lead to an increase in risk weights, affecting 

the capital ratio denominator and further diminishing banks’ solvency. Therefore, calibrating the 

CCyB based solely on the evolution of credit and potential credit losses on loans to the non-

financial private sector (NFPS) may not sufficiently reduce the pro-cyclical behaviour of the capital 

requirement and capital ratios in the banking sector, as it ignores the denominator.  

Figure 7: Conceptual Framework of the CCyB Covering Cyclical Movements in Risk Weights 

 

Note:  The illustration shows the stylized logic of the CCyB covering cyclical movements in risk weights. 

Risk accumulation during the expansion phase of the financial cycle increases the probability of a 

large deterioration in risk parameters. The risk weights start to decrease, which drives down the 

absolute capital requirement. The CCyB should be raised during this time period. In a downswing 

of the financial cycle, the CCyB should be released once the risk weights start to rise and their 

upward shift potential weakens. 

The approach presented in Section 2 can be used to estimate the evolution of aggregate risk weights 

based on the forecasted paths of key risk parameters. It can thus be used to derive the amount of 

nominal capital required to mitigate the cyclical movement of risk weights, with an emphasis on 

possibly increasing the CCyB once the financial cycle moves into the contraction phase and risk 

parameters deteriorate. The underlying logic of the CCyB calibration remains unchanged: the 

CCyB should be raised during times of expansion, when the perceived risks are likely to be 

underestimated, and released during downswings, when these risks materialize. Nevertheless, the 

proposed methodology should be viewed only as a supplement to the existing practices, as credit 

losses remain one of the key factors in the CCyB calibration. The conceptual framework for the 

proposed methodology for the CCyB covering cyclical fluctuations in risk weights is illustrated in 

Figure 7. 

We shall support the pro-cyclicality argument using data from the Czech banking sector. Starting 

in 2014, a prolonged period of favourable economic conditions caused PD PiT on loans to the 

NFPS to improve gradually (Figure 8, left panel). At the same time, the aggregate IRB risk weights 

decreased substantially (Figure 8, right panel). We acknowledge that the decrease in IRB risk 

weights might also have been driven by non-cyclical factors such as structural changes in the 

portfolios, improvements in internal risk procedures and models, and regulatory changes. However, 

it is reasonable to assume that it was at least partially driven by cyclical developments. Malovana 

(2018) supports this assumption by studying these fluctuations using panel data.  

CCyB (%) Capital Requirement (Absolute) - CCyB Capital Requirement (Absolute) –w/o CCyB

Financial Cycle Capital Requirement (%)

Time –––>
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Figure 8: Impact of the Financial Cycle on Selected Credit Risk Indicators by NFPS Portfolios 

12-month PD PiT (in percent) IRB risk weights (changes w.r.t. 2Q 2014 in pp) 

  

Scenario 

To measure the potential increase in risk weights due to cyclical behaviour, leading to additional 

requirements for capital, we first need to estimate the potential deterioration in the credit risk 

parameters. It is reasonable to assume that the level of deterioration depends on the position of the 

economy in the financial cycle. The potential for a significant increase in point-in-time risk 

parameters (PD PiT and LGD PiT) is higher in periods of strong financial and credit expansion 

than in periods of downturn. To quantify the potential deterioration, we estimate  

a conditional distribution – simulated with the maximum entropy bootstrap method proposed by 

Vinod (2006) – around the baseline scenario. The shape of the distribution of the parameters is 

driven by the current phase of the financial cycle, which, in the case of the Czech banking sector, 

is measured by the financial cycle indicator (FCI; see Plasil et al., 2016). The growing difference 

between newer and older observations of the FCI also increases the width of the simulated PD PiT 

and LGD PiT distributions.14 The simulation of the stressed risk parameters is done on an 8-quarter 

window starting in the second quarter of 2022. It contains the initial PD PiT15 and LGD PiT16 for 

the three main NFPS portfolios: (i) loans to non-financial corporations, (ii) loans to households 

secured by residential property and (iii) residual loans to households. The simulation also employs 

the last 8 quarters of the FCI. The stressed parameters are represented by the 99th quantile of the 

distribution values. The history and predictions of 12-month PD PiT and LGD PiT, together with 

the corresponding TTC and DT parameters, are shown in Figure 9. 

  

                                                           
14 Note that the ultimate goal of this exercise is to set the CCyB for the evolution of risk weights. Therefore, the 

potential worsening of the risk parameters is driven solely by cyclical features and not by structural, regulatory 

and other factors. 
15 The PDs for non-financial corporations are obtained from the Central Credit Register of the Czech Republic 

managed by the Czech National Bank. The PDs for households are obtained from the Czech Banking Credit 

Bureau – Client Register of Bank Information. 
16 The LGDs are based on data obtained from individual bank submissions reported in the CNB’s bottom-up 

supervisory stress tests. 
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Figure 9: Estimated Point-in-Time Credit Risk Parameters by NFPS Portfolios (in percent) 

Probability of default in percent 

 
Loss given default in percent 

 

With the projections of the risk parameters at hand, it is possible first to estimate the transitions 

between performing and non-performing status17 using the procedure outlined in Panos and Polak 

(2019b) and also the paths of 𝑃𝐷 𝑇𝑇𝐶𝑆𝐴𝑇 and 𝐿𝐺𝐷 𝐷𝑇𝑆𝐴𝑇 (see Figure 10), which are applied as in 

Equation 13 and Equation 14. The evolution of the TTC and DT credit risk parameters and the 

corresponding dynamics of the aggregate risk weights in the NFPS portfolios are illustrated in 

Figure 10. These dynamics are then translated into a general increase in risk-weighted assets 

(RWA) observed in Figure 11. 

Figure 10: Estimated Through-the-Cycle and Downturn Credit Risk Parameters and Risk 

Weights by NFPS Portfolios (in percent) 

PD TTC for IRB performing portfolio LGD DT for IRB performing portfolio Risk weights 

   

 
Note:  Solid line indicates observed data, dashed line indicates simulation. 

                                                           
17 Note that for CCyB calibration purposes, we did not work with credit growth, as the CCyB should be set on the 

existing portfolio only. We also slightly modified the methodology presented in Section 2 and the Appendix. 

Instead of credit growth for performing and non-performing exposures, we used the absolute changes to capture 

transitions between performing and non-performing status. With this approach, we reduce the inflation of the off-

balance sheet exposure value to a minimum. 
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Figure 11: Evolution of Risk-Weighted Assets by NFPS Portfolios (in CZK trillion) 

Non-financial corporations Households secured by res. property Residual loans to households 

   

 

Note:  Solid line indicates observed data, dashed line indicates simulation. 

 

In our simulation, the risk-weighted assets increased from an initial CZK 1.94 trillion to CZK 2.18 

trillion in 8 quarters purely due to the cyclical behaviour of risk weights.18 As the capital 

requirements are prescribed in percentages (currently approximately 14.3% of the TREA without 

the CCyB for banks regulated by the Czech National Bank), this rise will inherently lead to an 

increase in the capital requirement in absolute terms. The capital requirement for the portfolios 

considered would rise from CZK 277.34 billion (CZK 1,940 billion x 14.3%) at the start of our 

simulation to CZK 312.37 billion (Figure 12). The difference of CZK 35.03 billion represents the 

absolute increase in capital requirements due to the cyclical behaviour of risk weights, which, in 

our view, should be covered by the CCyB, as it is a clear manifestation of the financial cycle.19 In 

practice, we need to convert the calculated difference to a percentage of the total risk exposure 

amount (TREA), as the CCyB is prescribed in the regulations as a percentage of the TREA. As of 

2Q 2022, the TREA for the Czech banking sector stood at CZK 2.84 trillion. Consequently, our 

experiment suggests that the hypothetical additional CCyB rate required to cover the cyclical 

increase in risk weights would be 1.14%.20  

  

                                                           
18 To obtain relevant results, the size and structure of the portfolio remains unchanged (i.e. credit growth equals 

zero in this simulation). 
19 The NFPS portfolios considered consist almost entirely of loans to Czech residents. 
20 Note that the final value of the CCyB would be higher, because the estimated additional 1.14% only covers the 

cyclical increase in risk weights and not the potential unexpected credit losses caused by developments in the 

financial cycle. 
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Figure 12: Change in the Capital Requirement due to the Estimated Increase in RWA (in CZK 

billion) 

 

5. Conclusion 

This paper proposes a refined methodology for modelling banks’ risk-weighted assets, with  

a focus on capturing the internal risk structure of their portfolios at the individual obligor grade 

level. The approach can be applied to estimate future solvency positions in stress testing exercises 

and to improve the calibration of certain macroprudential instruments, such as the countercyclical 

capital buffer (CCyB). We have demonstrated that the framework has the potential to surpass the 

commonly applied portfolio level approaches in terms of estimation accuracy, as it takes advantage 

of highly granular supervisory data. This should reduce the likelihood of significant misestimation 

of risk-weighted assets, which can lead to poor estimations of solvency measures and induce false 

confidence. The methodology is sufficiently easy to replicate, as it is based on the EU-wide CRR2 

regulation and the supervisory common reporting (COREP) framework. It is also flexible enough, 

as various building blocks can be tailored to specific requirements. A hands-on example is provided 

in the Appendix, including direct links to the COREP row and column identifiers, further enhancing 

the transparency and replicability of the approach.  

Nevertheless, there are several caveats to our methodology. Firstly, the granularity of the COREP 

data is limited to the individual internal obligor grade level. This level of granularity is suitable for 

diversified retail portfolios, but it may not be sufficient for lumpy portfolios that contain large 

financial institutions or non-financial corporates. Secondly, some relevant information, such as the 

correlation reduction coefficient for companies with total annual sales below EUR 50 million, 

cannot be derived from the COREP data. Thirdly, the underlying portfolio level satellite models 

ultimately drive the dynamics of the risk parameters and exposure values at the internal obligor 

grade level. Therefore, the ability to capture different dynamics across the internal grades within a 

single portfolio might be limited. In addition, our methodology does not allow for migration 

between obligor grades, effectively preserving the portfolio’s internal structure. Lastly, the satellite 

models themselves are subject to model risk and other deficiencies common to stress testing 

satellite models. 

The paper also highlights the pro-cyclical behaviour of risk weights in the banking sector, 

amplifying financial cycles and potentially exacerbating financial instability, and the need for 
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macroprudential policy to counter such behaviour. We propose the use of the CCyB to address this 

cyclical behaviour of risk weights and its impact on banks’ capital position. The proposal is 

illustrated by an example where we calibrate the CCyB to cover the cyclical movement of risk 

weights, with an emphasis on possibly increasing the CCyB once the financial cycle moves into 

the contraction phase and risk parameters deteriorate. The simulation builds on data from the Czech 

banking sector and applies the proposed granular risk-weighted assets estimation approach. This 

methodology is used to derive the nominal amount of capital required to keep the capital 

requirement stable in the event of increasing risk weights during a downturn phase of the cycle. 
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Appendix 

The aim of this section is to illustrate the methodology proposed for 𝑅𝐸𝐴𝐶𝑅
𝑀  in Section 2 with a 

hands-on example featuring a simplified banking sector consisting of a single bank with three 

stylized portfolios: (1) Retail – Secured by immovable property non-SME (A-IRB approach), 

(2) Corporate – SME (F-IRB approach) and (3) Exposures to corporates (STA approach).21 

Portfolios in both the A-IRB and F-IRB approach use only three internal obligor grades. There is 

no loss of generality caused by these simplifications, as the concepts introduced in this section can 

be easily generalized for additional obligor grades, portfolios and banks. The bank and satellite 

model numbers used for this example are, however, purely illustrative and selected to highlight 

features of the proposed methodology. 

The input data are sourced from the EBA Common Reporting (COREP) framework, so they should 

be commonly available to all EU regulatory bodies. The particular COREP templates and row and 

column identifiers22 are shown in Table A.1 (A-IRB), Table A.2 (F-IRB) and Table A.3 (STA) 

below. Table A.3 is split into two parts, as defaulted exposures are reported in a separate STA 

exposure class. Data are shown for each of the internal grade systems considered and also as totals.  

At the beginning of this appendix, we will show how using the internal obligor grade structure for 

modelling purposes can deliver better outcomes than relying on the aggregated (row “total”) data, 

as it provides more accurate calculations of the starting point risk weights for each of the portfolios 

considered. Then we discuss how the projected PDs and LGDs, together with credit growth from 

satellite models, are used to model the evolution of risk weights at the grade level and how this 

affects the overall results. 

Table A.1: Input Data – A-IRB 

IRB exposure class: Retail – Secured by immovable property non-SME 

Own estimates of 

LGD and/or 

conversion factors: 

Yes 

Obligor grade (row 

identifier) 

COREP 

template / 

row 

PD assigned 

to obligor 

grade or 

pool (%) 

Exposure 

value (EUR) 

Exposure 

weighted 

average 

LGD (%) 

Exposure-

weighted 

average 

maturity 

value (days) 

Risk weighted 

exposure 

amount after 

supporting 

factors (EUR) 

Column - 0010 0110 0230 0250 0260 

Total exposures C 08.01 / 

0010 

4.87 157,000,000 22.36 - 79,915,795 

Grade 1 C 08.02 / 

0010-0001 

0.05 85,000,000 20.00 - 2,494,848 

Grade 2 C 08.02 / 

0010-0002 

8.00 70,000,000 25.00 - 76,670,947 

Grade 3 C 08.02 / 

0010-0003 

100.00 2,000,000 30.00 - 750,000 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

  

                                                           
21 Please also refer to the mapping in Table 1. 
22 A detailed description of the rows and columns from the COREP Framework is available on the EBA website: 

https://www.ebaeuropa.eu/risk-analysis-and-data/reporting-frameworks/reporting-framework-3.2 

https://www.ebaeuropa.eu/risk-analysis-and-data/reporting-frameworks/reporting-framework-3.2
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Table A.2: Input Data – F-IRB 

IRB exposure class: Corporate – SME 

Own estimates of 

LGD and/or 

conversion factors: 

No 

Obligor grade (row 

identifier) 

COREP 

template / 

row 

PD assigned 

to obligor 

grade or 

pool (%) 

Exposure 

value (EUR) 

Exposure 

weighted 

average 

LGD (%) 

Exposure-

weighted 

average 

maturity 

value (days) 

Risk weighted 

exposure 

amount after 

supporting 

factors (EUR) 

Column - 0010 0110 0230 0250 0260 

Total exposures C 08.01 / 

0010 

7.49 138,000,000 45.29 753 88,254,898 

Grade 1 C 08.02 / 

0010-0001 

0.15 55,000,000 45.00 730 15,635,057 

Grade 2 C 08.02 / 

0010-0002 

3.00 75,000,000 45.00 770 72,619,841 

Grade 3 C 08.02 / 

0010-0003 

100.00 8,000,000 50.00 750 0 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

Table A.3: Input Data – STA 

STA exposure class: Corporates 

Row identifier COREP template / 

row 

Exposure value 

(EUR) 

 

Risk weighted 

exposure amount 

after supporting 

factors (EUR) 

Column - 0200 0220 

Total exposures C 07.00 / 0010 25,000,000 25,000,000 

 
STA exposure class: Exposures in default 

Row identifier COREP template / 

row 

Exposure value 

(EUR) 

 

Risk weighted 

exposure amount 

after supporting 

factors (EUR) 

Column - 0200 0220 

Total exposures C 07.00 / 0010 1,000,000 1,500,000 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

A.1 Initial Calculations: Total Level Approach 

A-IRB Approach 

Table A.4 captures the initial risk weight calculations without using the individual internal obligor 

grade data for the A-IRB portfolio Retail – Secured by immovable property non-SME. Columns A 

and B contain total exposure and REA, which are sourced directly from Table A.1.  

Table A.4: Initial Calculations (using total data) – A-IRB 

Total 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 
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(A) = C 08.01 (R0010 

C0110) 

(B) = C 08.01 

(R0010 C0260) 

(C) = B / A (D), exposure 

weighted avg. of 

(H) and (R) 

157,000,000 79,915,795 50.90 65.16 

 

 
Non-defaulted (1/2) 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 

Phi coefficient 

(𝝓) 

(E), sum of exposure 

values in non-

defaulted grades 

(F), sum of REA 

values in non-

defaulted grades 

(G) = F / E (H), see Eq. 5 (I) = G / H 

155,000,000 79,165,795 51.07 65.52 0.78 

 
Non-defaulted (2/2) 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Non-defaulted PD 

(%) 

Non-defaulted 

LGD (%) 

Maturity (𝑴) 

(years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) (%) 

SME 

supporting 

factor 

(J), exposure 

weighted avg. of PDs 

in non-defaulted 

grades 

(K), exposure 

weighted avg. of 

LGDs in non-

defaulted grades 

(L), not required 

for retail 

portfolios 

(M), fixed 1 for 

retail portfolios 

(N), fixed 15% for 

exposures secured 

by immovable 

property 

(O), 0.7619 - 

0.85 for SME 

exposures; 1 for 

non-SME 

exposures 

3.64 22.26 - 1.00 15.00 1.00 

 
Defaulted 

A-IRB exposure 

class: 

Retail – Secured by immovable 

property non-SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

(P) = C 08.02 (R0010 

C0110-0003) 

(Q) = C 08.02 

(R0010 C0260-

0003) 

(R) = Q / P  

2,000,000 750,000 37.50 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

The total implied risk weight in column C represents the actual risk weight reported by the bank. 

It can be obtained easily as 

 𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑙𝑖𝑒𝑑 𝑅𝑊 (C) =  
𝑅𝐸𝐴 (B)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (A)
=
79,915,795

157,000,000
= 50.90% 

(A.1) 

The total calculated risk weight in column D is the exposure-weighted average of the calculated 

risk weights for non-defaulted exposures (column H) and the implied risk weight for defaulted 

exposures (column R).  

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑊 (D) =  
(H) ∗ (E) + (R) ∗ (P)

(E) + (P)
 

=
65.52% ∗ 155,000,000 + 37.50% ∗ 2,000,000

155,000,000 + 2,000,000
 

= 65.16% 

(A.2) 

Table continues 
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The values in columns E and F represent non-defaulted exposures and REA, which are the sums 

over the respective exposures and the REA values in non-defaulted grades in Table A.1: 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (E) = ∑ C 08.02 (R0010 – i C0110)

𝑖∈{0001;0002}

 

= 85,000,000 + 70,000,000 = 155,000,000 
(A.3) 

and 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴 (F) = ∑ C 08.02 (R0010 – i C0260)

𝑖∈{0001;0002}

 

= 2,494,848 + 76,670,947 = 79,165,795 
(A.4) 

The non-defaulted implied risk weight in column G follows the same logic as the total implied risk 

weight in column C and thus 

 
𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑖𝑚𝑝𝑙𝑖𝑒𝑑 𝑅𝑊 (G) =  

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴 (F)

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (E)
=
79,165,795

155,000,000
 

= 51.07% 
(A.5) 

Column H shows the non-defaulted calculated risk weight, which is derived using the CRR2 

regulatory risk weight formula (see Equation 5) employing the reported values of risk parameters 

as inputs. 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑊 (H) 

= 

(

 
 
(K) ∗ 𝑁

{
 

 
1

√(1 − (N))

∗ 𝐺((J)) +   √
(N)

1 − (N)
∗ 𝐺(0,999) 

}
 

 

− (K) ∗ (J)

)

 
 

 

∗ (M) ∗ 1.06 ∗ 12.5 ∗ (O) 

= (22.26% ∗ 𝑁 {
1

√(1 − 15%)
∗ 𝐺(3.64%) +   √

15%

1 − 15%
∗ 𝐺(0,999) } − 22.26% ∗ 3.64%)

∗ 1.00 ∗ 1.06 ∗ 12.5 ∗ 1.00 = 65.52% 

(A.6) 

The coefficient 𝜙 in column I can then be obtained as  

 𝜙 (I) =  
𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑖𝑚𝑝𝑙𝑖𝑒𝑑 𝑅𝑊 (G)

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑊 (H)
=
51.07%

65.52%
= 0.78 

(A.7) 

The value of 𝜙 well below 1 indicates that in this case the calculated risk weight is significantly 

higher than the actually reported implied risk weight. The main reason for this large discrepancy is 

the non-linearity of the risk weight formula. 

Columns J to O cover the individual inputs to Equation (A.6 above. In particular, columns J and K 

represent non-defaulted PD and LGD respectively. The values are calculated as exposure-weighted 

averages of the corresponding parameters in non-defaulted grades: 
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𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑃𝐷 (𝐽)

=  
∑ C 08.02 (R0010 – i C0010) ∗ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

∑ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

=
0.05% ∗ 85,000,000 + 8.00% ∗ 70,000,000

85,000,000 + 70,000,000
= 3.64% 

(A.8) 

and 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝐿𝐺𝐷 (𝐾)

=  
∑ C 08.02 (R0010 – i C0230) ∗ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

∑ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

=
20.00% ∗ 85,000,000 + 25.00% ∗ 70,000,000

85,000,000 + 70,000,000
= 22.26% 

(A.9) 

Maturity (column L) is not required for retail exposures, as the maturity adjustment (column M) is 

always set to 1. Similarly, the correlation coefficient (column N) is always set to 15% for exposures 

secured by immovable property and the SME supporting factor (column O) is set to 1, as the 

portfolio analysed is non-SME. 

The last part of the table deals with defaulted exposures. These are treated in a simplified manner, 

as we assume a constant spread between LGD and the expected loss best estimate, which results in 

constant projections for A-IRB non-performing exposure risk weights, and the fixed value is equal 

to the implied risk weight. Columns P and Q contain defaulted exposures and REA, which are 

sourced directly from Table A.1. The defaulted implied risk weight in the last column R is obtained 

using the familiar equation: 

 𝐷𝑒𝑓 𝑖𝑚𝑝𝑙𝑖𝑒𝑑 𝑅𝑊 (𝑅) =  
𝐷𝑒𝑓 𝑅𝐸𝐴 (𝑄)

𝐷𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑃)
=
750,000

2,000,000
= 37.50% (A.10) 

F-IRB Approach 

Table A.5 has an identical structure to Table A.4 and captures the initial risk weight calculations 

without using the individual internal obligor grade data for the F-IRB portfolio Corporate – SME. 

The data are sourced from Table A.2. Columns A to K are essentially equivalent to the 

corresponding columns in Table A.4, so no further comments are necessary here.  

Table A.5: Initial Calculations (using total data) – F-IRB 

Total 

F-IRB exposure 

class: 

Corporate – SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 

(A) = C 08.01 (R0010 

C0110) 

(B) = C 08.01 

(R0010 C0260) 

(C) = B / A (D), exposure 

weighted avg. of 

(H) and (R) 

138,000,000 88,254,898 63.95 80.47 
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Non-defaulted (1/2) 

F-IRB exposure 

class: 

Corporate – SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 

Phi coefficient 

(𝝓) 

(E), sum of exposure 

values in non-

defaulted grades 

(F), sum of REA 

values in non-

defaulted grades 

(G) = F / E (H), see Eq. 5 (I) = G / H 

130,000,000 88,254,898 67.89 85.43 0.79 

 
Non-defaulted (2/2) 

F-IRB exposure 

class: 

Corporate – SME 

Non-defaulted PD 

(%) 

Non-defaulted 

LGD (%) 

Maturity (𝑴) 

(years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) (%) 

SME 

supporting 

factor 

(J), exposure 

weighted avg. of PDs 

in non-defaulted 

grades 

(K), exposure 

weighted avg. of 

LGDs in non-

defaulted grades 

(L), exposure 

weighted avg. of 

maturity in non-

defaulted grades 

in years 

(M), see Eq. 9 and 

Eq. 10 

(N), see Eq. 6 (O), 0.7619 - 

0.85 for SME 

exposures; 1 for 

non-SME 

exposures 

1.79 45.00 2.06 1.15 16.89 0.7619 

 
Defaulted 

F-IRB exposure 

class: 

Corporate – SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

(P) = C 08.02 (R0010 

C0110-0003) 

(Q) = C 08.02 

(R0010 C0260-

0003) 

(R) = Q / P; 

always 0 in F-IRB 

approach 

8,000,000 0 0 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

Column L captures the exposure-weighted average of the maturities in non-defaulted grades 

expressed in years: 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 (𝐿)

=  
∑ C 08.02 (R0010 – i C0250) ∗ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

365 ∗ ∑ C 08.02 (R0010 – i C0110)𝑖∈{0001;0002}

=
730 ∗ 55,000,000 + 770 ∗ 75,000,000

365 ∗ (55,000,000 + 75,000,000)
= 2.06 

(A.11) 

The value from Equation (A.11, together with the non-defaulted PD, is then used to calculate the 

maturity adjustment 𝑍(𝑀, 𝑃𝐷) in column M using Equation 9 and Equation 10: 

 

𝑍(𝑀, 𝑃𝐷) (M) =
1 + ((𝐿) − 2.5) ∗ (0.11852 –  0.05478 ∗ ln((J)))

2

1 − 1.5 ∗ (0.11852 –  0.05478 ∗ ln((J)))
2  

=
1 + (2.06 − 2.5) ∗ (0.11852 –  0.05478 ∗ ln(1.79%))2

1 − 1.5 ∗ (0.11852 –  0.05478 ∗ ln(1.79%))2
 

= 1.15 

(A.12) 

Also, the correlation coefficient 𝑅(𝑃𝐷) in column N is in this case a function of PD according to 

Equation 6: 

Table continues 

… 
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𝑅(𝑃𝐷) (N) = 0.12 ∗
1 − 𝑒−50∗(J)

1 − 𝑒−50
+ 0.24 ∗ ( 1 −

1 − 𝑒−50∗(J)

1 − 𝑒−50
) 

= 0.12 ∗
1 − 𝑒−50∗1.79%

1 − 𝑒−50
+ 0.24 ∗ ( 1 −

1 − 𝑒−50∗1.79%

1 − 𝑒−50
) 

= 16.89% 

(A.13) 

The applied SME supporting factor in column O takes the value of 0.7619 in this case, as we are 

dealing with an SME portfolio. The last difference stems from the defaulted exposures, which 

always receive a zero risk weight in the F-IRB approach.  

STA Using Total Data 

Table A.6 shows the initial calculations for the STA portfolios Corporates and Exposures in default, 

which, unlike in the IRB approaches, are reported as a separate exposure class. For both exposure 

classes, the exposure and REA values are sourced directly from Table A.3 and the total implied 

risk weight follows the logic introduced earlier in this section. No 𝜙 ratio is calculated, as we 

assume a constant risk weight for STA exposure classes equal to the total implied risk weight 

induced from the regulatory data.  

Table A.6: Initial Calculations (using total data) – STA 

Total 

STA exposure class: Corporates 

Exposure value (EUR) REA value (EUR) Implied risk weight (%) 

(A) = C 07.00 (R0010 C0200) (B) = C 07.00 (R0010 

C0220) 

(C) = B / A 

25,000,000 25,000,000 100 

 
Total 

STA exposure class: Exposures in default 

Exposure value (EUR) REA value (EUR) Implied risk weight (%) 

(D) = C 07.00 (R0010 C0200) (E) = C 07.00 (R0010 

C0220) 

(F) = B / A 

1,000,000 1,500,000 150 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

A.2 Initial Calculations: Grade Level Approach 

Next, we repeat the initial calculations for the A-IRB and F-IRB portfolios, but now with the 

calculations using the internal obligor grade level data. The procedure is provided in Table A.7 and 

Table A.8. The STA portfolio is not recalculated, as no higher granularity is available in COREP.  

We observe significant convergence of the implied and calculated risk weights on the grade level, 

so the values of 𝜙 near 1. For the A-IRB exposure class Retail – Secured by immovable property 

non-SME, almost a perfect match was achieved, while for the F-IRB exposure class Corporate – 

SME, some (albeit much smaller than in Table A.5) discrepancies remain. Although some 

discrepancies might remain for certain portfolios, the granular approach based on the internal 

obligor grade data seems to be more desirable, as it allows us to match the implied and calculated 

risk weights in a significantly more precise manner than relying solely on the aggregate values. 
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In general, the numbers in this example are fictitious. However, the 𝜙 ratio values were inspired 

by actual values we were able to obtain in real-world applications.  

Table A.7: Initial Calculations (using grade-level data) – A-IRB 

Total 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 

(A) = C 08.01 (R0010 

C0110) 

(B) = C 08.01 

(R0010 C0260) 

(C) = B / A (D), exposure 

weighted avg. of 

all (H) rows and 

(R) 

157,000,000 79,915,795 50.90 50.90 

 
Non-defaulted (1/2) 

A-IRB 

exposure 

class: 

Retail – Secured by immovable property non-SME 

Grade level Exposure value 

(EUR) 

REA value 

(EUR) 

Implied 

risk 

weight 

(%) 

Calculated 

risk weight 

(%) 

Phi 

coefficient 

(𝝓) 

Internal rating 

grade level as 

in C 08.02 

(E) = C 08.02 

(R0010 C0110); 

only non-defaulted 

grades 

(F) = C 08.02 

(R0010 C0260); 

only non-defaulted 

grades 

(G) = F / E (H), see Eq. 5 (I) = G / H 

Grade 1 85,000,000 2,494,848 2.94 2.94 1.00 

Grade 2 70,000,000 76,670,947 109.53 109.53 1.00 

 
Non-defaulted (2/2) 

A-IRB 

exposure 

class: 

Retail – Secured by immovable property non-SME 

Grade level Non-

defaulted 

PD (%) 

Non-

defaulted 

LGD (%) 

Maturity 

(𝑴) (years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) 
(%) 

SME 

supporting 

factor 

Internal rating 

grade level as 

in C 08.02 

(J), C 08.02 

(R0010 

C0010); only 

non-defaulted 

grades 

(K), C 08.02 

(R0010 

C0230); only 

non-defaulted 

grades 

(L), not 

required for 

retail 

portfolios 

(M), fixed 1 

for retail 

exposures 

(N), fixed 

15% for 

exposures 

secured by 

immovable 

property 

(O), 0.7619 - 

0.85 for SME 

exposures; 1 

for non-SME 

exposures 

Grade 1 0.05 20.00 - 1.00 15.00 1.00 

Grade 2 8.00 25.00 - 1.00 15.00 1.00 

 
Defaulted (Grade 3) 

A-IRB exposure 

class: 

Retail – Secured by immovable property 

non-SME 

Exposure value 

(EUR) 

REA value (EUR) Implied risk 

weight (%) 

(P) = C 08.02 

(R0010 C0110-

0003) 

(Q) = C 08.02 

(R0010 C0260-

0003) 

(R) = Q / P  

2,000,000 750,000 37.50 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

  

Table continues … 
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Table A.8: Initial Calculations (using grade-level data) – F-IRB 

Total 

F-IRB exposure 

class: 

Corporate – SME 

Exposure value 

(EUR) 

REA value (EUR) Implied risk 

weight (%) 

Calculated risk 

weight (%) 

(A) = C 08.01 

(R0010 C0110) 

(B) = C 08.01 

(R0010 C0260) 

(C) = B / A (D), exposure 

weighted avg. of 

all (H) rows and 

(R) 

138,000,000 88,254,898 63.95 64.94 

 
Non-defaulted (1/2) 

F-IRB exposure 

class: 

Corporate – SME 

Grade level Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

Calculated risk 

weight (%) 

Phi coefficient 

(𝝓) 

Internal rating 

grade level as in C 

08.02 

(E) = C 08.02 

(R0010 C0110); 

only non-

defaulted grades 

(F) = C 08.02 

(R0010 C0260); 

only non-

defaulted grades 

(G) = F / E (H), see Eq. 5 (I) = G / H 

Grade 1 55,000,000 15,635,057 28.43 26.82 1.06 

Grade 2 75,000,000 72,619,841 96.83 99.82 0.97 

 
Non-defaulted (2/2) 

F-IRB 

exposure 

class: 

Corporate – SME 

Grade level Non-

defaulted PD 

(%) 

Non-

defaulted 

LGD (%) 

Maturity 

(𝑴) (years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) 
(%) 

SME 

supporting 

factor 

Internal rating 

grade level as 

in C 08.02 

(J), C 08.02 

(R0010 

C0010); only 

non-defaulted 

grades 

(K), C 08.02 

(R0010 

C0230); only 

non-defaulted 

grades 

(L), C 08.02 

(R0010 

C0250); only 

non-defaulted 

grades in 

years 

(M), see Eq. 

9 and Eq. 10 

(N), see Eq. 

6 

(O), 0.7619 - 

0.85 for SME 

exposures; 1 

for non-SME 

exposures 

Grade 1 0.15 45.00 2.00 1.34 23.13 0.7619 

Grade 2 3.00 45.00 2.11 1.13 14.68 0.7619 

 
Defaulted (Grade 3) 

F-IRB exposure 

class: 

Corporate – SME 

Exposure value 

(EUR) 

REA value 

(EUR) 

Implied risk 

weight (%) 

(P) = C 08.02 

(R0010 C0110-

0003) 

(Q) = C 08.02 

(R0010 C0260-

0003) 

(R) = Q / P  

8,000,000 0 0 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

A.3 Satellite Models 

Section 2 of the paper discusses the use of satellite models to model REA. Table A.9 and Table 

A.10 present the starting point (T0) and projections (T1, T2 and T3) for PD, LGD and growth rates 

for both defaulted and non-defaulted exposures. Both the starting point and the projections are 

Table continues … 
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again simplified and fictitious and do not represent any scenario or satellite model outputs 

considered by the Czech National Bank. 

Table A.9: Risk Parameters Projections – Retail 

Total – Adverse 

Exposure class: Retail – Secured by immovable property 

Time step PD TTC (%) LGD DT (%) Non-defaulted 

exposure growth 

(%) 

Defaulted exposure 

growth (%) 

Typically quarters or 

years 

(A), estimated by 

satellite models 

(B), estimated by 

satellite models 

(C), estimated by 

satellite models 

(D), estimated by 

satellite models 

T0 3.50 25.00 1.50 2.00 

T1 4.00 27.50 0.00 7.50 

T2 4.50 30.00 0.50 6.00 

T3 3.75 30.00 1.00 3.00 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

Table A.10: Risk Parameters Projections – Corporates 

Total – Adverse 

Exposure class: Corporates 

Time step PD TTC (%) LGD DT (%) Non-defaulted 

exposure growth 

(%) 

Defaulted exposure 

growth (%) 

Typically quarters or 

years 

(A), estimated by 

satellite models 

(B), estimated by 

satellite models 

(C), estimated by 

satellite models 

(D), estimated by 

satellite models 

T0 2.00 55.00 3.00 4.00 

T1 4.00 60.00 -2.00 12.00 

T2 3.00 60.00 1.00 7.00 

T3 2.50 60.00 2.00 4.50 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

A.4: Projections of Risk-Weighted Assets 

A-IRB Approach 

Table A.11 presents the risk weight projections based on the individual internal obligor grades for 

the A-IRB portfolio Retail – Secured by immovable property non-SME. The starting point values 

are sourced from Table A.7. Column A and column B represent the sum of the exposures (columns 

D and N) and REA (columns F and P) across all grades in a given time period, such that, for 

example, for T3: 

 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (A) =  ∑ 𝐺𝑟𝑎𝑑𝑒 𝑖 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3
𝑖∈{1,2,3}

 (D & N) 

= 86,279,250 + 71,053,500 + 2,347,370 

= 159,680,120 

(A.14) 

and 

  



38   Josef Švéda, Jiří Panoš, Vojtěch Siuda 

 

 

 

𝑇𝑜𝑡𝑎𝑙 𝑅𝐸𝐴𝑇3 (B) =  ∑ 𝐺𝑟𝑎𝑑𝑒 𝑖 𝑅𝐸𝐴𝑇3
𝑖∈{1,2,3}

 (F & P) 

= 3,381,030 + 95,800,191 + 880,264 

= 100,061,485 

(A.15) 

Column C then shows the total projected risk weight for the portfolio, given (for T3) as   

 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑅𝑊𝑇3 (C) =
𝑇𝑜𝑡𝑎𝑙 𝑅𝐸𝐴𝑇3 (B)

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3  (A)
 

=
100,061,485

159,680,120
= 62.66% 

(A.16) 

The non-defaulted exposure projections are captured in column D. They are calculated using the 

parameters from column C of Table A.9. Thus, for example, the T3 value of Grade 1 can be 

obtained as: 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (D) 

       = 𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇2
𝐺𝑟𝑎𝑑𝑒 1(D) ∗ (1 + 𝑔𝑟𝑇3

𝑁𝑜𝑛 –𝑑𝑒𝑓
) 

= 85,425,000 ∗ (1 + 1%) = 86,279,250  

(A.17) 

Column E then shows the risk weight projections based on Equation 15, which for T3 of Grade 1 

would go as follows: 

 

𝑁𝑜𝑛 –def 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑅𝑊𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (𝐸)        

=  

(

 
 
(𝐼) ∗ 𝑁

{
 

 1

√(1 − (𝐿))
∗ 𝐺((𝐻))+   √

(𝐿)

1− (𝐿)
∗ 𝐺(0.999) 

}
 

 

− (𝐼)

∗ (𝐻)

)

 
 
∗ (𝐾) ∗ 1.06 ∗ 12.5 ∗ (𝑀) ∗ (𝐺)

= (24.46% ∗ 𝑁 {
1

√(1 − 15%)
∗ 𝐺(0.06%) +   √

15%

1 − 15%
∗ 𝐺(0.999) }

− 24.46% ∗ 0.06%) ∗ 1.00 ∗ 1.06 ∗ 12.5 ∗ 1.00 ∗ 1.00 = 3.92% 

(A.18) 

The REA value for the given grade and time period (column F) can then be simply calculated as 

follows (again shown for T3 of Grade 1):  
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𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (F) 

 = 𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (D) ∗ 𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑊𝑇3

𝐺𝑟𝑎𝑑𝑒 1 (E) 

= 86,279,250 ∗ 3.92% = 3,381,030 

(A.19) 

The coefficient 𝜙 in column G is sourced from the initial calculations in column I of Table A.7 and 

is kept constant throughout the projection period. It is a key ingredient in Equation (A.18, which 

ensures that the initial calculated risk weight is always equal to the initial implied risk weight 

derived from the supervisory templates.  

Columns H to M contain the remaining inputs to Equation (A.18. In particular, columns H and I 

show projections of PD and LGD based on columns A and B of Table A.9 and Equation 13 and 

Equation 14. Thus, for T3 of Grade 1 the equations are applied as follows: 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑃𝐷𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (H) 

  = 𝛷 (𝛷−1(𝑃𝐷T0
𝐺𝑟𝑎𝑑𝑒 1 (H)) + 𝛷−1(𝑃𝐷 𝑇𝑇𝐶𝑇3

𝑆𝐴𝑇) − 𝛷−1(𝑃𝐷 𝑇𝑇𝐶T0
𝑆𝐴𝑇)) 

= 𝛷(𝛷−1(0.05%) + 𝛷−1(3.75%) − 𝛷−1(3.5%)) = 0.06% 

(A.20) 

and 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝐿𝐺𝐷𝑇3
𝐺𝑟𝑎𝑑𝑒 1 (I) 

 = 𝛷 (𝛷−1(𝐿𝐺𝐷T0
𝐺𝑟𝑎𝑑𝑒 1 (I)) + 𝛷−1(𝑇𝑇𝐶 𝐿𝐺𝐷𝑇3

𝑆𝐴𝑇) − 𝛷−1(𝑇𝑇𝐶 𝐿𝐺𝐷T0
𝑆𝐴𝑇)) 

= 𝛷(𝛷−1(20.00%) + 𝛷−1(30.00%) − 𝛷−1(25.00%)) = 24.46% 

(A.21) 

As mentioned earlier, maturity (column J) is not required for retail exposures, as the maturity 

adjustment (column K) is always set to 1. Similarly, the correlation coefficient (column L) is always 

set to 15% for exposures secured by immovable property and the SME supporting factor 

(column M) is set to 1, as the projected portfolio is non-SME. 

The last part of Table A.11 covers the simplified approach to the risk weight projections of 

defaulted exposures. The defaulted exposure projections are captured by column N and are 

calculated using the parameters from column D of Table A.9. Thus, for T3 we get: 

 

𝐷𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (N)  

= 𝐷𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇2 (N) ∗ (1 + 𝑔𝑟𝑇3
𝐷𝑒𝑓
) 

= 2,279,000 ∗ (1 + 3%) = 2,347,370  

(A.22) 

The projected risk weight values for defaulted exposures (column O) are fixed across time periods 

and equal to the implied risk weight from the initial calculations in Table A.7. Finally, the defaulted 

REA projections (column P) are obtained by simple multiplication, as shown below for T3: 
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𝐷𝑒𝑓𝑅𝐸𝐴𝑇3 (N) 

 = 𝐷𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (N) ∗ 𝐷𝑒𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑊𝑇3 (O) 

= 2,347,370 ∗ 37.50% = 880,264 

(A.23) 

Table A.11: Projection Calculations (using grade-level data) – A-IRB 

Total 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Time step Exposure value 

(EUR) 

REA value (EUR) Projected risk 

weight (%) 

Typically quarters or 

years 

(A), sum of exposure 

values in all grades 

(B), sum of REA 

values in all grades 

(C) = B / A 

T0 157,000,000 79,915,795 50.90 

T1 157,150,000 92,637,119 58.95 

T2 158,054,000 106,193,990 67.19 

T3 159,680,120 100,061,485 62.66 

 
Non-defaulted (1/2) – Adverse 

A-IRB 

exposure class: 

Retail – Secured by immovable property non-SME 

Grade level Time step Exposure 

value (EUR) 

Projected risk 

weight (%) 

REA value 

(EUR) 

Phi coefficient 

(𝝓) 

Internal rating 

grade level as in 

C 08.02 

Typically 

quarters or 

years 

(D), projected 

using column 

(C) of Table A.9 

(E), see Eq. 15 (F) = D * E (G), fixed value 

calculated in 

column (I) of 

Table A.7 

Grade 1 T0 85,000,000 2.94 2,494,848 1.00 

T1 85,000,000 3.86 3,283,767 1.00 

T2 85,425,000 4.94 4,220,398 1.00 

T3 86,279,250 3.92 3,381,030 1.00 

Grade 2 T0 70,000,000 109.53 76,670,947 1.00 

T1 70,000,000 126.50 88,547,102 1.00 

T2 70,350,000 143.74 101,118,967 1.00 

T3 71,053,500 134.83 95,800,191 1.00 

 
Non-defaulted (2/2) 

A-IRB 

exposure 

class: 

Retail – Secured by immovable property non-SME 

Grade 

level 

Time 

step 

Non-

defaulted PD 

(%) 

Non-

defaulted 

LGD (%) 

Maturity 

(𝑴) 

(years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) (%) 

SME 

supporting 

factor 

Internal 

rating 

grade 

level as in 

C 08.02 

Typically 

quarters 

or years 

(H), projected 

using column 

(A) of Table 

A.9 and Eq. 13 

(I), projected 

using column 

(B) of Table 

A.9 and Eq. 14 

(J), not 

required 

for retail 

portfolios 

(K), fixed 1 

for all retail 

exposures 

(L), fixed 

15% for 

exposures 

secured by 

immovable 

property 

(M), 0.7619 

- 0.85 for 

SME 

exposures; 

1 for non-

SME 

exposures 

Grade 1 T0 0.05 20.00 - 1.00 15.00 1.00 

T1 0.06 22.22 - 1.00 15.00 1.00 

T2 0.08 24.46 - 1.00 15.00 1.00 

T3 0.06 24.46 - 1.00 15.00 1.00 

Grade 2 T0 8.00 25.00 - 1.00 15.00 1.00 

T1 8.95 27.50 - 1.00 15.00 1.00 

T2 9.88 30.00 - 1.00 15.00 1.00 

T3 8.48 30.00 - 1.00 15.00 1.00 

Table continues 

… 
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Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

F-IRB Approach 

Table A.12 has an identical structure to Table A.11 and captures the risk weight projections using 

the individual internal obligor grade data for the F-IRB portfolio Corporate – SME. The starting 

point values are sourced from Table A.8 and the risk parameter projections from Table A.10. 

Columns A to H are essentially equivalent to the corresponding columns in Table A.11, so no 

further comments are necessary here. 

Column I contains LGD projections, which, according to the regulation, are fixed at 45% for senior 

exposures without eligible collateral under the F-IRB approach, so no calculations are required 

(which also means that the LGD DT projections in column B of Table A.10 are effectively unused 

in our example). We also assume that maturity (column J) remains fixed at the initial value during 

the projection period. The maturity adjustment, however, evolves over time, as it also depends on 

PD, which is not fixed (see Equation (A.12). Analogously, the correlation coefficient is also 

dependent on PD (see Equation (A.13) and hence evolves throughout the projection period. 

The applied SME supporting factor in column M takes the value of 0.7619 in this case, as we are 

projecting an SME portfolio. Another major difference is caused by the defaulted exposures, which 

always receive a zero risk weight in the F-IRB approach, and thus, while the exposure amount itself 

evolves (analogously to Equation (A.22), the projected REA for defaulted exposures is always 0. 

Table A.12: Projection Calculations (using grade-level data) – F-IRB 

Total 

F-IRB exposure 

class: 

Corporate – SME 

Time step Exposure value 

(EUR) 

REA value (EUR) Projected risk 

weight (%) 

Typically quarters or 

years 

(A), sum of exposure 

values in all grades 

(B), sum of REA 

values in all grades 

(C) = B / A 

T0 138,000,000 88,254,898 63.95 

T1 136,360,000 113,627,594 83.33 

T2 138,261,200 101,958,984 73.74 

T3 141,266,104 96,850,878 68.56 

 

  

Defaulted (Grade 3) - Adverse 

A-IRB exposure 

class: 

Retail – Secured by immovable property non-SME 

Time step Exposure value 

(EUR) 

Projected risk 

weight (%) 

REA value 

(EUR) 

Typically quarters 

or years 

(N), projected using 

column (D) of Table 

A.9 

(O), fixed value 

calculated in column 

(R) of Table A.7 

(P) = N * O  

T0 2,000,000 37.50 750,000 

T1 2,150,000 37.50 806,250 

T2 2,279,000 37.50 854,625 

T3 2,347,370 37.50 880,264 
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Non-defaulted (1/2) 

F-IRB exposure 

class: 

Corporate – SME 

Grade level Time step Exposure 

value (EUR) 

Projected risk 

weight (%) 

REA value 

(EUR) 

Phi coefficient 

(𝝓) 

Internal rating 

grade level as in 

C 08.02 

Typically 

quarters or years 

(D), projected 

using column 

(C) of Table 

A.10 

(E), see Eq. 15 (F) = D * E (G), fixed value 

calculated in 

column (I) of 

Table A.8 

Grade 1 T0 55,000,000 28.43 15,635,057 1.06 

T1 53,900,000 48.01 25,878,542 1.06 

T2 54,439,000 38.93 21,194,862 1.06 

T3 55,527,780 33.88 18,810,964 1.06 

Grade 2 T0 75,000,000 96.83 72,619,841 0.97 

T1 73,500,000 119.39 87,749,052 0.97 

T2 74,235,000 108.80 80,764,121 0.97 

T3 75,719,700 103.06 78,039,914 0.97 

 
Non-defaulted (2/2) 

F-IRB 

exposure 

class: 

Corporate – SME 

Grade level Time step Non-

defaulted 

PD (%) 

Non-

defaulted 

LGD 

(%) 

Maturity 

(𝑴) 

(years) 

Maturity 

adjustment 

(𝒁(𝑴,𝑷𝑫)) 

Correlation 

coefficient 

(𝑹(𝑷𝑫)) 
(%) 

SME 

supporting 

factor 

Internal rating 

grade level as 

in C 08.02 

Typically 

quarters or 

years 

(H), 

projected 

using 

column (A) 

of Table 

A.10 and 

Eq. 13 

(I), fixed 

45% for 

senior 

exposures 

without 

eligible 

collateral 

(J), fixed 

values 

given by 

column 

(L) of 

Table A.8 

(K), see Eq. 

9 and Eq. 10  

(L), see Eq. 6 (M), 0.7619 

- 0.85 for 

SME exp.; 

1 for non-

SME exp. 

Grade 1 T0 0.15 45.00 2.00 1.34 23.13 0.7619 

T1 0.39 45.00 2.00 1.24 21.90 0.7619 

T2 0.26 45.00 2.00 1.28 22.54 0.7619 

T3 0.20 45.00 2.00 1.31 22.84 0.7619 

Grade 2 T0 3.00 45.00 2.11 1.13 14.68 0.7619 

T1 5.73 45.00 2.11 1.09 12.68 0.7619 

T2 4.38 45.00 2.11 1.11 13.34 0.7619 

T3 3.70 45.00 2.11 1.11 13.89 0.7619 

 
Defaulted (Grade 3) 

F-IRB exposure 

class: 

Corporate – SME 

Time step Exposure value 

(EUR) 

Projected risk 

weight (%) 

REA value 

(EUR) 

Typically quarters 

or years 

(N), projected using 

column (D) of Table 

A.10 

(O), fixed 0% for all 

F-IRB exposures 

(P) = N * O  

T0 8,000,000 0 0 

T1 8,960,000 0 0 

T2 9,587,200 0 0 

T3 10,018,624 0 0 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

STA Approach 

The STA portfolios in Table A.13 receive a simplified treatment regarding their projections. The 

starting point values are sourced from Table A.6 and the exposure growth projections from Table 

A.10, as we are dealing with a corporate portfolio. The logic of the STA projections is 

Table continues 

… 
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straightforward. The amount of non-defaulted and defaulted exposures evolves in line with 

Equation (A.17 and Equation (A.22. The projected risk weights are fixed and equal to the initial 

implied risk weight induced from the regulatory data. The total projected risk weight, however, 

evolves over time as the ratio of non-defaulted to defaulted exposures changes due to different 

growth rates.  

Table A.13: Projection Calculations – STA 

Total 

STA exposure class: Corporates, including exposures in default 

Time step Exposure value (EUR) REA value (EUR) Projected risk weight (%) 

Typically quarters or 

years 

(A), sum of exposure 

values in all STA classes 

(B), sum of REA 

values in all grades 

(C) = B / A 

T0 26,000,000 26,500,000 101.92 

T1 25,620,000 26,180,000 102.19 

T2 25,943,400 26,542,600 102.31 

T3 26,492,228 27,118,392 102.36 

 
Total 

STA exposure class: Corporates 

Time step Exposure value (EUR) Projected risk weight (%) REA value (EUR) 

Typically quarters or 

years 

(A), projected using 

column (C) of Table 

A.10 

(B), fixed value based on 

column (C) of Table A.6 

(C) = N * O  

T0 25,000,000 100 25,000,000 

T1 24,500,000 100 24,500,000 

T2 24,745,000 100 24,745,000 

T3 25,239,900 100 25,239,900 

 
Total 

STA exposure 

class: 

Exposures in default 

Time step Exposure value (EUR) Projected risk weight (%) REA value (EUR) 

Typically quarters or 

years 

(D), projected using 

column (D) of Table A.10 

(E), fixed value based on 

column (F) of Table A.6 

(F) = N * O  

T0 1,000,000 150 1,500,000 

T1 1,120,000 150 1,680,000 

T2 1,198,400 150 1,797,600 

T3 1,252,328 150 1,878,492 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

A.5 Projection Calculations – Total 

Table A.14 illustrates the final step, where the projections under the A-IRB (Table A.11), F-IRB 

(Table A.12) and STA (Table A.13) approaches are aggregated together. The aggregation logic is 

very straightforward. Columns A and B contain the total exposure and REA values across all 

defaulted and non-defaulted portfolios. See the example for T3: 

 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (A) 

 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (D) + 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (G) 

= 313,820,130 + 13,618,322 = 327,438,452 
(A.24) 

and 
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𝑇𝑜𝑡𝑎𝑙 𝑅𝐸𝐴𝑇3 (B) 

 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 (E) + 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 (H) 

= 221,271,999 + 2,758,756 = 224,030,755 
(A.25) 

The total projected risk weight (column C) for time period T3 can then be simply calculated as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑅𝑊𝑇3 (C) 

=
𝑇𝑜𝑡𝑎𝑙 𝑅𝐸𝐴𝑇3 (B)

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (A)
=
224,030,755

327,438,452
= 68.42% (A.26) 

Columns D and E show the total exposure and REA evolution for non-defaulted exposures. For T3, 

the calculations would be: 

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (D) 

       = 𝐴𝐼𝑅𝐵 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 + 𝐹𝐼𝑅𝐵 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3

+ 𝑆𝐴 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 

= (86,279,250 + 71,053,500) + (55,527,780 + 75,719,700) + 25,239,900 

= 313,820,130 

(A.27) 

and  

 

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 (E) 

       = 𝐴𝐼𝑅𝐵 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 + 𝐹𝐼𝑅𝐵 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 + 𝑆𝐴 𝑛𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 

= (3,381,030 + 95,800,191) + (18,810,964 + 78,039,914) + 25,239,900 

= 221,271,999 

(A.28) 

The non-defaulted projected risk weight (column F) for time period T3 can then be calculated using 

the familiar formula: 

 

𝑁𝑜𝑛 – def 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑅𝑊𝑇3 (F) 

=
𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑅𝐸𝐴𝑇3 (E)

𝑁𝑜𝑛 – 𝑑𝑒𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑇3 (D)
=
221,271,999

313,820,130
= 70.51% (A.29) 

Finally, the calculations for defaulted exposures in columns G to I follow the same logic as 

presented for the non-defaulted exposures above. 

Table A.14: Projection Calculations – Total CR REA 

Total 

Exposure class: All defaulted and non-defaulted exposure classes across approaches 

Time step Exposure value 

(EUR) 

REA value (EUR) Projected risk 

weight (%) 

Typically quarters or 

years 

(A), sum of all 

exposure values 

(B), sum of all REA 

values 

(C) = B / A 

T0 321,000,000 194,670,694 60.65 

T1 319,130,000 232,444,713 72.84 

T2 322,258,600 234,695,574 72.83 

T3 327,438,452 224,030,755 68.42 
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Total non-defaulted 

Exposure class: All non-defaulted exposure classes across approaches 

Time step Exposure value 

(EUR) 

REA value (EUR) Projected risk 

weight (%) 

Typically quarters or 

years 

(D), sum of all non-

defaulted exposure 

values 

(E), sum of all non-

defaulted REA 

values 

(F) = E / D 

T0 310,000,000 192,420,694 62.07 

T1 306,900,000 229,958,463 74.93 

T2 309,194,000 232,043,349 75.05 

T3 313,820,130 221,271,999 70.51 

 
Total defaulted 

Exposure class: All defaulted exposure classes across approaches 

Time step Exposure value 

(EUR) 

REA value (EUR) Projected risk 

weight (%) 

Typically quarters or 

years 

(G), sum of all non-

defaulted exposure 

values 

(H), sum of all non-

defaulted REA 

values 

(I) = H / G 

T0 11,000,000 2,250,000 20.45 

T1 12,230,000 2,486,250 20.33 

T2 13,064,600 2,652,225 20.30 

T3 13,618,322 2,758,756 20.26 

Note:  The numbers in the table are purely fictitious and designed for illustrative purposes. 

This step concludes the calculation of 𝑅𝐸𝐴𝐶𝑅
𝑀 . The last step for obtaining 𝑇𝑅𝐸𝐴 would entail adding 

the constant terms for 𝑅𝐸𝐴𝐶𝑅
𝑁𝑂𝑁−𝑀 and 𝑅𝐸𝐴𝑂𝑡ℎ𝑒𝑟 according to Equation 16. 
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