
 

 

www.cnb.cz 

Working Paper Series ——— 13/2023 

A Sparse Kalman Filter: A Non-Recursive  

Approach  

Michal Andrle, Jan Brůha 

C
z
e
c
h

 N
a
ti
o
n

a
l 
B

a
n
k
 —

—
—

 W
o
rk

in
g
 P

a
p
e

r 
S

e
ri
e
s
 —

—
—

 1
3
/2

0
2

3
 



 

 

 

 

The Working Paper Series of the Czech National Bank (CNB) is intended to disseminate the results of the 

CNB’s research projects as well as the other research activities of both the staff of the CNB and 

collaborating outside contributors, including invited speakers. The Series aims to present original research 

contributions relevant to central banks. It is refereed internationally. The referee process is managed by the 

CNB Economic Research Division. The working papers are circulated to stimulate discussion. The views 

expressed are those of the authors and do not necessarily reflect the official views of the CNB. 

 

Distributed by the Czech National Bank, available at www.cnb.cz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewed by:   Alex Gibberd (Lancaster University) 

   František Brázdik (Czech National Bank) 

Project Coordinator:  Volha Audzei 

Issued by:  © Czech National Bank, November 2023 

http://www.cnb.cz/


A Sparse Kalman Filter: A Non-Recursive Approach

Michal Andrle and Jan Brůha ∗

Abstract

We propose an algorithm to estimate unobserved states and shocks in a state-space model un-
der sparsity constraints. Many economic models have a linear state-space form – for example,
linearized DSGE models, VARs, time-varying VARs, and dynamic factor models. Under the con-
ventional Kalman filter, which is essentially a recursive OLS algorithm, all estimated shocks are
non-zero. However, the true shocks are often zero for multiple periods, and non-zero estimates
are due to noisy data or ill-conditioning of the model. We show applications where sparsity is
the natural solution. Sparsity of filtered shocks is achieved by applying an elastic-net penalty to
the least-squares problem and improves statistical efficiency. The algorithm can be adapted for
non-convex penalties and for estimates robust to outliers.

Abstrakt

Navrhujeme algoritmus pro odhad nepozorovaných stavů a šoků ve stavovém modelu při omezení
na řídkost řešení. Mnohé ekonomické modely mají lineární stavovou formu – např. linearizo-
vané modely DSGE, VAR, časově proměnlivé VAR a dynamické faktorové modely. Při použití
konvenčního Kalmanova filtru, který je v zásadě rekurzivním OLS algoritmem, jsou všechny od-
hadované šoky nenulové. Skutečné šoky však jsou často po větší počet období nulové a nenulové
odhady jsou důsledkem šumu v datech nebo špatné podmíněnosti modelu. Ukazujeme aplikace,
kde je přirozeným řešením řídkost. Řídkost filtrovaných šoků je dosažena aplikací penalizace po-
mocí metody elastické sítě na problém nejmenších čtverců a zlepšuje statistickou efektivnost. Al-
goritmus lze upravit pro nekonvexní penalizaci a pro odhady robustní vůči extrémním hodnotám.
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1. Introduction

Linear state-space models make up a large class of interesting economic models, such as linearized
DSGE models, VARs, trend-cyclical VARs, time-varying VARs, and dynamic factor models. These
models relate unobserved shocks or disturbances to observed variables through a set of linear dy-
namic equations. Under the assumption of linearity, the task of estimating the shocks is a least-
squares problem (Whittle, 1983). The well-known Kalman filter is an ingenious algorithm for
solving this least-squares problem recursively. The unobserved shocks can therefore be estimated
without the Kalman filter using least-squares projection (Kollmann, 2013). The outcomes of the
Kalman filter and least-squares projection are equivalent.

Although the fact that the Kalman filter can be replaced by just one – albeit possibly huge – linear
regression has been noticed, it seems that the possible advantages of the regression formulation have
not been fully realized.

Many structural economic models are terribly ill-conditioned – they are overly sensitive to small
changes in data. For example, DSGE models usually add a structural (or “structural”) shock each
time a new observable is added to avoid stochastic singularity.1 Hence, the number of unknowns
(i.e., shocks) grows at the same pace as the number of observations. In addition, many shocks may
have similar impulse responses, which leads to poor shock identification. In such cases, a relatively
minor change in the data inputs can lead to a substantial change in the estimated path of the structural
shocks and in the interpretation of the data. Supply and demand shocks can alternate quickly and
offset each other, and are often strongly cross-correlated. This is equivalent to multicollinearity in
the linear regression problem.2

Traditional linear least squares can perform poorly when the regressors are correlated and/or the
number of unknowns is large relative to the number of observations. In such cases, it is widely
recognized that “regularization” of the ill-conditioned problem leads to more reliable outcomes.3

We illustrate that regularization techniques can be used to improve estimates of unobserved shocks
in state-space models, and we show how to do so. There are many ways to regularize the least-
squares problem. One of the most common approaches is to add a suitable penalty term to the least-
squares objective function. Depending on the form of the penalty term, the regularized solution may
be sparse: only some of the unknowns are non-zero.

There are cases where one wants to have a sparse solution based on economic reasoning, beyond
efficiency and stability concerns. For example, if one of the unobserved variables is related to a
policy target, such as keeping long-term inflation expectations anchored to the central bank’s target,
it may be the case that such a variable rarely changes. It would change if the official target were
to change or, in our case, if monetary policy were to lose credibility. Using the historical data, we

1 We call a state-space system stochastically singular if the implied matrix of the multivariate spectrum of the
observed variables is rank deficient for almost all frequencies where it is defined. This typically happens if the
number of shocks to the state equations is lower than the number of observable equations and there is no mea-
surement noise. A notorious example is real business cycle models, where one shock (a productivity shock) drives
all the macroeconomic variables (consumption, investment, hours). NK DSGE modelers tend to avoid this by
applying specific shocks to each structural equation.
2 Andrle (2014) describes this phenomenon for the case of structural models.
3 For example, Theobald (1974) shows that for any arbitrary linear regression problem there is a penalty parameter
such that the resulting ridge regression achieves a smaller RMSE than OLS; see also van Wieringen (2020).
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may then want to see only a few shocks to such a variable. But that is something the Kalman filter
cannot do, being simply a least-squares projection. All shocks will be non-zero at all times.

The regression formulation of the filtering problem is immensely powerful. It is possible to use
any efficient algorithm that regularizes the least-squares solution and that possibly also achieves
sparsity, such as Lasso. It is also straightforward to consider various extensions, such as non-
convex penalty functions and alternatives to the least-squares objective to achieve robustness to
outliers. The penalty is dictated by the goal of the analysis.

We organize the rest of the paper as follows. The next section 2 introduces the general idea behind
the sparse Kalman filter, and section 3 illustrates it on a simple example. Section 4 discusses two
extensions: non-convex penalties and robustness. In the last section, we conclude. Appendices
contain additional materials, including a small Monte Carlo study that illustrates the usefulness of
sparsity for statistical efficiency.

2. Basic Principles

Throughout the paper, we use the terms “filtered” and “smoothed” shocks interchangeably, so that
shocks are estimated using the full history of observations.

Let us consider a general linear state-space model:

xt = Atxt−1 +Ktεt (1)
yt =Ctxt +Ωtνt , (2)

where xt are unobserved states, εt are shocks to the states, yt are observed variables, and νt are
measurement errors. In the following, we will assume that the shocks and measurement errors have
zero mean and unit variance.4 By allowing the observation vector yt to change dimension over time
and making the matrices Ct time-varying, we can accommodate arbitrary patterns of missing data,
asynchronous time releases, mixed-frequency data, and expert judgment (priors).

By simple but rather tedious substitutions, we can write the observations as a function of the shocks
and the initial conditions x0:

yt =Ct

(
t

∏
i=1

At−i

)
x0 +Ct

[
t−1

∑
i=1

(
t−i

∏
j=0

At− j−1

)
Kiεi

]
+CtKtεt +Ωtνt . (3)

4 This can always be achieved by appropriately scaling matrices Kt and Ωt
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By stacking equations (3), we obtain the following system:


y1
y2
...

yT


︸ ︷︷ ︸

≡Y

=


C1K1 0 . . . 0 Ω1 0 . . . 0

C2A2K1 C2K2 . . . 0 0 Ω2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

CT

(
∏

T−2
j=0 AT− j

)
K1 CT

(
∏

T−3
j=0 AT− j

)
K2 . . . CT KT 0 0 . . . ΩT


︸ ︷︷ ︸

≡A



ε1
ε2
...

εT
ν1
ν2
...

νT


︸ ︷︷ ︸

≡E

+

+


C1A1

C2A2A1
...

CT ∏
T−1
i=0 AT−i


︸ ︷︷ ︸

≡B

x0.

(4)

2.1 Known Initial Conditions

If the initial conditions for the state variables, x0, are known (or imposed), we can subtract them
from the vector of observations to get a system of linear equations:

Y−Bx0 = A×E,

which can be solved for unknown shocks E by the least-squares method:

min
E

(Y−Bx0 −AE)T (Y−Bx0 −AE)+℘(E), (5)

where℘(E) is a suitable penalty term for regularizing the solution. Once the shocks E are estimated,
it is easy to find the unobserved states by iterating on (4) or the state-space form.

As a useful starting point, let us consider an L1 norm on the shocks to the state equations:

℘(E) = λ

T

∑
t=1

||εt ||1, (6)

while the measurement errors are not penalized.5 This penalty achieves sparsity, which, as we
have argued, can be beneficial from the point of view of statistical efficiency and sometimes also of
economic reasoning.

Problem (5) and (6) is basically a Lasso regression, which is often used in machine learning, and
there are efficient algorithms to solve it. For the computation experiments in our paper, we use the
ADMM algorithm (see, for example, chapter 3.5 of Fan et al., 2020).6

5 We can think of them as residuals unexplained by the model.
6 For many interesting economic applications, we can expect matrix A in (5) to be ill-conditioned. Coordinate
descend algorithms may be rather slow in such a situation. Andrle (2014) uses the singular value decomposition
of matrix A to demonstrate why and how ill-conditioned systems often arise in structural macroeconomic models.



A Sparse Kalman Filter: A Non-Recursive Approach 5

2.2 Unknown Initial Conditions

The initial conditions are rarely known. We can estimate them together with the shocks. In a
model with multiple states, the effects of some initial conditions may be similar to the effects of
the shocks in the initial periods. That would result in collinearity and the initial conditions might
then be imprecisely estimated.7 Regularized estimation can be helpful in such a case. For the initial
conditions, we do not, however, propose a Lasso-type penalty.

In fact, the researcher usually has at least a rough idea of what the initial conditions might be. Let
x̃0 denote such an idea. Then, we propose to estimate the shocks and initial conditions as a solution
to the problem:

min
E,ξ0

(Y−Bx̃0 −Bξ0A−E)T (Y−Bx̃0 −Bξ0 −AE)+℘(E)+(x̃0 −ξ0)
T W (x̃0 −ξ0), (7)

for a suitable positive semidefinite matrix W . (7) is an elastic-net regression and the initial condi-
tions can be found using the trivial substitution x0 = x̃0 +ξ0.

Matrix W can reflect the desired degree of confidence in the a priori knowledge about the initial
conditions. Our experience shows that even modest regularization of the initial conditions can
greatly improve the stability of the filtration.

2.3 Residua of Filtration

Unless the underlying system is stochastically singular, the conventional Kalman filter decomposes
all the movements in the observation variables yt , i.e., there is nothing unexplained. If the number
of states is lower than the number of observables (as, for example, in dynamic factor models),
measurement noise can be added to prevent the system from being stochastically singular. This is
an analogous situation to OLS. If the number of linearly independent explanatory variables is equal
to or greater than the number of observations, there are no residua: the fit is perfect.

On the other hand, the sparse filter may not explain all the movements in the observable variables,
regardless of the number of shocks. This is much the same as in regression models with lasso-type
penalties: even in systems with more explanatory variables than observations,8 some variance in
the explained variable remains unexplained. From the statistical point of view, this is exactly what
guards the model from being overfitted.

3. Application: A Trend-Cycle Decomposition of Euro Area Inflation

In this part of the paper, we apply the proposed approach to a simple univariate model for a de-
composition of the euro area quarterly inflation rate. No doubt there are more elaborate models for
inflation. Nevertheless, the simplicity of the model serves well to illustrate the ideas proposed in
this paper.

7 Researchers working with non-trivial state-space models have probably noticed many times that the initial con-
ditions sometimes exhibit high sensitivity to data changes and that the estimated shocks display erratic behavior in
the initial periods, offsetting each other. This is precisely a symptom of this collinearity problem.
8 Such regressions naturally arise, for instance, in genetic studies, when an expansion in the number of observations
(for example, the number of people whose genes are being investigated) is accompanied by an expansion in the
number of explanatory variables (the number of different sequences of genes).
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We decompose inflation πt into three components:

πt = π̄t + π̂t + π̇t . (8)

Here, π̄t is the trend component modeled as a random walk, π̂t is the cyclical component modeled
as a stationary AR(2) process, and π̇t is the high-frequency component modeled as an invertible
MA(1) process. Andrle and Brůha (2017) use a similar decomposition of inflation, and the cyclical
component co-moves well with the cyclical component of output and unemployment.

The state equation reads as:
π̄t
π̂t
π̂t−1
π̇t
π̇t−1

=


1 0 0 0 0
0 α1 α2 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0




π̄t−1
π̂t−1
π̂t−2
π̇t−1
π̇t−2

+


σ̄ 0 0
0 σ̂ 0
0 0 0
0 0 σ̇

0 0 0


 ε̄t

ε̂t
ε̇t

 , (9)

where ε̄t is the shock to the trend component, ε̂t is the shock to the cyclical component, ε̇t is the
shock to the high-frequency component, σ̄ , σ̂ , and σ̇ are the corresponding standard deviations, and
α1 and α2 are the coefficients of the AR(2) process that captures the cyclical dynamics.

The observation equation is as follows:

πt =
[

1 1 0 1 ϑ
]


π̄t
π̂t
π̂t−1
π̇t
π̇t−1

 , (10)

where ϑ is the parameter of the MA process that captures the dynamics of the high-frequency
component.

The model is calibrated to quarterly euro area data from 2000Q1 to 2021Q4. The resulting parameter
values are as follows: α1 = 1.14, α2 =−0.37, ϑ =−0.24, σ̄ = 0.0704, σ̂ = 0.1810, and σ̇ = 0.045.9

The effects of the sparsity imposed by λ > 0 in (6) on the estimation of the trend, the cycle, and
the shocks is displayed in Figure 1. The upper left chart displays the data, the conventional Kalman
filter trend, and the trend implied by the sparse filter with λ = 0.25. The upper right chart then
compares the cycles implied by the two filters. The lower charts display the non-zero shocks to the
trend component (lower left) and the cyclical component (lower right) from the two filters.

The conventional Kalman filter identifies non-zero shocks to all components in all periods. This
is the implication of the least-squares nature of the Kalman filter. It is also apparent that many of
those shocks offset each other: this is true not only within equations, but also across equations. As a
result, the filtered trend generated by the conventional Kalman filter is an incessantly varying series,
with many small shocks moving it up and down. The cyclical part is also incessantly affected by
small shocks, some of them canceling each other out in subsequent periods.

9 It is common to specify the cyclical components as an AR(2) process. Andrle and Plasil (2017) show how using
system priors to estimate the parameters helps guarantee stationarity, concentration of the variance at business-
cycle frequencies, and an absence of secondary cycles.
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Figure 1: Filtration and Sparse Filtration of Euro Area Inflation (q/q in %)
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On the other hand, the sparse filter identifies just a few shocks to the trend and a small number of
shocks to the cyclical part of the model. As a result, the inflation trend is piece-wise constant. Before
2014, this trend seems firmly anchored at 2%. In 2012 and 2013, there are two negative shocks to
the trend that together cause the trend to drop by 0.6 p.p. The timing of this drop corresponds to
outside evidence of a fall in long-run inflation expectations around this time (Busetti et al., 2014;
Corsello et al., 2021).

The sparse filter also identifies fewer shocks to the cycle. There are positive shocks prior to 2008
and negative cyclical shocks in 2009 corresponding to the cooling of the euro area economy after the
outbreak of the Great Recession. The negative cyclical shocks to inflation in our simple setup proxy
the shocks stemming from the decline in output in the euro area, the decline in global output, and
the associated decline in commodity prices. Of course, a univariate model cannot separate demand
from supply shocks. Further, there are negative cyclical shocks during the euro area sovereign debt
crisis and negative shocks around the outbreak of the covid-19 pandemic, while positive inflation
shocks appear later during the pandemic.

How should one choose the penalty parameter λ? This is an important issue. In practical empirical
work with penalized regression, cross-validation is a popular approach. It can be used here as well.
One can run the filter with various missing observations,10 use a smoother to compute those missing
observations, and then compute statistics such as the mean average error or the root mean square
error to use for cross-validation. As we are in the time series context, one way of finding a suitable

10 It is extremely easy to run the sparse filter with missing observations. It is sufficient just to delete the rows in (4)
that correspond to the missing observations.
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value of λ is based on the prediction errors εh
T (λ ) ≡ yT+h|T (λ )− yT+h for various T and h, where

yT+h|T is the prediction of yT+h based on the sample ending at T using the filter with regularization
parameter λ .11 The choice of approach is dictated by the intended application.

The reader may ask about the possibility of estimating the parameters of the state-space model
under the proposed approach. Our approach does not assume any functional form of the residua,
hence we are silent on likelihood-based methods. Nevertheless, one can use likelihood-free tech-
niques (such as EM algorithms or matching moments) without any difficulty under sparse and/or
robust filtering.

To demonstrate these approaches on our example, the following Table 1 displays the mean absolute
error for various values of λ (including λ = 0, which corresponds to the standard Kalman filter) and
various validation schemes. The column CV presents the mean absolute error for 99 repetitions of
the cross-validation exercise: for each repetition, 20% of the observations are randomly deleted and
the filters must extrapolate them. The remaining columns display the mean average forecast error
1
40 ∑

80
t=41

∣∣∣εh
t

∣∣∣ for h = 1, . . . 4. As in machine learning applications, penalization can have a beneficial
effect on predictive performance.

Table 1: Mean Absolute Error for Various Penalty Parameters

Forecasting Horizon
Penalty parameter CV 1 2 3 4
λ = 0 2.9862 1.1074 1.1140 1.0875 1.0668
λ = 0.05 2.8005 1.0629 1.0972 1.1087 1.1382
λ = 0.10 2.7041 1.0622 1.1063 1.1405 1.1775
λ = 0.25 2.8597 1.0349 1.0827 1.1160 1.1354
λ = 0.50 3.4076 1.0849 1.1140 1.1319 1.1415
λ = 0.75 4.0028 1.1075 1.1203 1.1275 1.1310

4. Extensions: Robustness and Alternative Penalties

The sparse filter can be extended in many dimensions. Below, we give examples of alternative
regularization schemes and show how to make the filter robust to outliers.

4.1 Alternative Regularization Penalties

L1 (6) set some of the shocks to zero and also made the non-zero ones shrink towards zero. This
shrinkage towards zero is a general property of convex penalties Lq for q ≥ 1.

It may sometimes be preferable to set some of the shocks to zero but not shrink the remaining
ones. In that case, one has to use non-convex penalties. One of the most commonly used is the
Smoothed Clipped Absolute Deviation (SCAD) penalty proposed by Fan and Li (2001). It is defined

11 It is also very easy to compute this prediction once the Kalman filter or the sparse filter has been use to estimate
the shocks in the state equations.
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as follows:

Cλ ,α(x) =


λ |x| if |x| ≤ λ

−x2+2αλ+λ 2

2(α−1) if λ < |x| ≤ αλ

0.5(α +1)λ 2 if |x|> αλ

. (11)

The penalty depends on two parameters λ > 0 and α > 1. The first determines the degree of shrink-
age for small values, while the second determines the region of no penalization.

Solving the optimization problem with the SCAD penalty is more difficult than solving it with the
Lasso penalty. This is because (11) is not convex. Fortunately, the optimization problem with the
SCAD penalty can be approximated using iterated weighted Lasso problems (see, for example,
chapter 2.8.6 of Bühlmann and Geer, 2011) as follows:

E[k] = min
E

(Y−Bx0 −AE)T (Y−Bx0 −AE)+
T

∑
t=1

∑
j

w[k]
j,t |ε j,t |, (12)

where the weights in the kth iteration are given as the derivative of (11):

w[k]
j,t = C

′
λ ,α

(
ε
[k−1]
j,t

)
=


λ if |ε [k−1]

j,t | ≤ λ

αλ−|ε [k−1]
j,t |

α−1 if λ < |ε [k−1]
j,t | ≤ αλ

0 if |ε [k−1]
j,t |> αλ

, (13)

where ε
[k−1]
j,t is the filtered jth shock at time t obtained in the (k−1)th iteration. In our experiments,

we use the results from the Lasso penalty as the starting point for the iteration exercise: ε
[0]
j,t = εLasso

j,t .

4.2 Robustness to Outliers

Another useful extension is to make the filter robust to outliers. As the Kalman filter solves the
least-squares problem, it is sensitive to unusual observations – to outliers. It may be good to have a
filter robust to such observations. The regression formulation helps us here too.

In the regression context, a popular approach to robust regression is the method of iteratively
reweighted least squares. The method is based on repeated running of weighted least squares,
where observations with large residuals receive small or zero weights (Street et al., 1988). This can
be directly applied here. To achieve robustness, the filter is computed by iteration on the following
problem:

min
E,ξ0

(Y−Bx̃0 −Bξ0A−E)TW(Y−Bx̃0 −Bξ0 −AE)+℘(E)+(x̃0 −ξ0)
T W (x̃0 −ξ0), (14)

where W is the weighted matrix. In the initial iteration, W is equal to the identity matrix. In later
iterations, it is a diagonal matrix, with the diagonal entries being the weights inversely related to the
magnitude of the residua. This idea can be applied both to the conventional Kalman filter and to the
sparse Kalman filter with various penalties.
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4.3 Application: Robust Trend-Cyclical Decomposition of the Job Finding Rate

In this part of the paper, we apply the robust (and sparse) Kalman filter to the time series of the job
finding rate of the registered unemployed in the Czech Republic. This time series is a nice cyclical
indicator and hence is of interest to policymakers. It exhibits model cyclical behavior, with the
exception of the first two quarters of 2020, when it shows a down and up movement apparently not
related to the underlying trend or cycle.

We illustrate robustness using a simple model to decompose this time series into its trend, cycle,
and high-frequency components. The trend is modeled as a random walk, the cycle is a stationary
AR process, and the high-frequency noise is an iid shock. Figure 2 displays the Kalman and sparse
Kalman decomposition using this model. The figure is organized similarly to Figure 1. As in the
previous example, the sparse filter needs far fewer shocks to explain the trend and the cycle. For
sparse filtering, the trend is basically the long-run mean.

Figure 2: Filtration and Sparse Filtration of the Czech Job Finding Rate
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Both filters, however, are affected by the erratic behavior of the series at the beginning of the pan-
demic in 2020. The conventional Kalman filter attributes the one-off fall in the job finding rate both
to the trend and to the cycle. We can see large negative shocks to both components. The sparse filter
attributes it to the cyclical component only. However, it is quite unlikely that this movement is of
a trend or a cyclical nature. It is in fact an unusual observation probably caused by the extraordi-
nary situation at the outbreak of covid-19, when both the government and private agents were just
starting to learn how to live with the pandemic.
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In such a situation, we want to use a robust version of these filters. For this experiment, we use a
biquadratic weight function that puts weights on each observation as follows:

wi ∝ max
(

0,1−
(
(8m)−1ri

)2
)2

,

where ri is the residuum of the ith observation and m is the mean absolute deviation of all the residua.

Figure 3 shows the effect of the robustness on both the conventional Kalman filter and on its sparse
variant. The shocks from the robust Kalman filter correspond to the shocks from the standard
Kalman filter, except for early 2020. The robust Kalman filter does not propagate the outlier to the
trend or to the cycle. The robust sparse filter finds no shock to the trend and hence the trend is
constant, as in the case of the non-robust version of the sparse filter. However, the robust sparse
filter – unlike the non-robust one – does not propagate the outlier to the cycle, either. Except for this
episode, the robust and non-robust sparse shocks are very similar to each other.

Figure 3: Robust Filtration of the Czech Job Finding Rate
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5. Conclusion

In this paper, we showed that the non-recursive, regression formulation of the Kalman filter can be 
useful, as it enables the application of wide range of modern machine learning methods that are 
used to achieve robustness and sparsity. This is often helpful for many real-world economic 
problems from both the statistical point of view (more precise estimates of shocks) and the 
economic point of view (interpretation can be simpler). One can go beyond the applications in this 
paper, for example, by using non-convex penalties instead of the lasso-type penalty.
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While the idea of sparse filtering is not new, it has not been applied to many economic problems.
The trend filtering by Tibshirani (2014) is an exciting approach for filtering univariate data, and a
fast and precise algorithm was proposed by Ramdas and Tibshirani (2016). However, extending
trend filtering to the multivariate setting is not very straightforward. The approach described in this
paper can easily be applied to multivariate problems.

We also suggested a robust extension to the Kalman filter. One of the earliest methods for achieving
robustness was based on the wonderful idea of the Gaussian sum filter (Alspach and Sorenson,
1972). This filter assumes that the noise in the observation equation is a mixture of two Gaussian
distributions: the first is one with reasonable standard errors and applies to most observations,
and the second is one with large standard errors and contains model outliers. However, running the
Gaussian sum filter involves numerical integration, which is usually done by performing simulations
and/or pruning past states. Numerical integration along with various approximations in the state
update step is a typical feature of filters with heavy-tailed distributions in the measurement equation.
Iterative least-squares reweighing can be a way of avoiding this.

To conclude, we propose that our regression formulation of the Kalman filter makes it possible to
reap the benefits of the sparsity tools suggested by the modern literature on machine learning and
high-dimensional statistics.
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Appendix A: Additional Results

A.1 Filter Stability

The following figures show the partial effects of a change in observation yτ on the filtered shocks
and states. We consider what would happen to the filtration if yτ was increased by 0.1 p.p. at
τ = 1 . . . 4. The filtered shocks εt (and hence states xt) are functions of the observations:

εt = ft(y1, y2 . . . yT ).

For the standard Kalman filter, functions ft are obviously linear12 (but still time-varying), but for
the sparse Kalman filter with the Lasso penalty, they are non-linear.13

Figure A1 reports ∆τεt = ft(y1, y2 . . . yτ + 0.1, . . . yT ) − ft(y1, y2 . . . yτ , . . . yT ) for the standard
Kalman filter for the shocks to the trend ε̄t (the upper left chart) and the shocks to the cycle ε̃t
(the lower left chart). The right-hand charts then show the effect of the change in observations on
the filtered states – this effect is a combination of the effects on the shocks and those on the initial
conditions.

Figure A1: Effect of a Change in Observations on Shocks and States: Standard Kalman Filter
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The figure reveals the roaming-like behavior of the impacts of the observations on the filtration,
especially for early observations. For example, a positive increase in observations in period τ = 1
increases the filtered shock at time t = 1 and reduces it at time t = 2 and the overall impact of the
trend estimation is positive. On the other hand, a positive increase in the observations in period

12 Koopman and Harvey (2003); Andrle (2013)
13 If the ridge penalty were used instead of the Lasso penalty, linearity would be obtained, as in the case of the
standard Kalman filter.
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τ = 2 increases the estimate of the filtered shock at times t = 2 and t = 4 and reduces it at time t = 3.
The whole trajectory of the estimated trend component is (maybe surprisingly) reduced. This is
mirrored by a monotonous increase in the estimated cycle (the lower right subchart), and the effect
on the filtered shocks to the cycles is even more roaming (the lower left subchart).

Hence, the Kalman filter outcomes are rather sensitive to minor changes in the data. Note that
because the functions that relate the shocks and states to the observations are linear for the standard
Kalman filter, this behavior does not depend on the data: it would be present whatever data were
fed into the filter. Why does this erratic behavior happen? Because of the collinearity of matrix A
in (4). The effects of ε̄1 and ε̄2 on yt are the same for t ≥ 2.

Figure A2 is the analogy of Figure A1 for the sparse Kalman filter. Here, the linearity of functions
ft breaks down and depends on the data. The results in the figure are for the data used in section 3.

Figure A2: Effect of a Change in Observations on Shocks and States: Sparse Kalman Filter
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Appendix B: Simulation Experiments

To highlight the performance of the sparse filter, we perform two simulation experiments.

In the first experiment, we use the simple unobserved component model for a univariate series
{xt}T

t=1. The series is composed of a trend, a random walk, component x̄t , and a cyclical component
x̂t that follows an AR(2) process:

xt = x̄t + x̂t ,

x̄t = x̄t−1 + σ̄ ε̄t ,

x̂t = α1x̂t−1 +α2x̂t−2 + σ̂ ε̂t ,

and one observes the series {yt}T
t=1:

yt = xt +σyνt .

The shocks ε̄t , ε̂t , and νt are uncorrelated iid zero-mean processes with standard deviations equal to
1. We set the following parameters for the experiment: α1 = 1.4, α2 =−0.8, σ̄ = 0.2, σ̂ = 0.5. All
the parameters are known, as are the initial conditions. In the experiment, we vary the length of the
observed time series T ∈ [20, 50, 100] and the observation noise σy ∈ [0, 0.025, 0.05].

We repeat each setting of T and σy for 1,000 random draws and compute the RMSE of the filtration
of the trend component x̄t over a grid of regularization parameters λ ∈ [0, 0.05, 0.10.15 . . .2.5]. The
mean RMSEs over the 1,000 replications as a function of λ are displayed in Figure B1.

Figure B1: RMSE as a Function of the Regularization Parameter (Unobserved Component
Model)
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Apparently, the lowest RMSEs are achieved for positive values of the regularization parameter,
i.e., the shrinkage helps. Moreover, the value of the regularization parameter that achieves the lowest
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RMSE is increasing in both the length of the observations T and the variance of the measurement
noise σy. The latter effect is intuitive: higher variance of the measurement noise makes the trend
more difficult to identify. Why is the value of the regularization parameter increasing in T? The fact
is that for a time series of observations T , the number of states is 2T . This means that the number
of “unknowns” grows faster than the number of observations (in the same way that adding one
more observation to a regression model adds two more regressors). That is why the regularization
becomes more important.

The second experiment is centered on a dynamic factor model. We assume that a hidden factor ft
follows a stationary AR(2) model:

ft = α1 ft−1 +α2 ft−2 +σ f εt ,

and one observes ten time series linked to the unobserved factor as follows:

yit = γi0 ft + γi1 ft−1 + γi2 ft−2 +ξit ,

where xiit are independent AR(1) processes:

ξit = κiξit−1 +σiνi.

The parameters of the experiment are set as follows: α1 = 1.3, α2 = −0.8, σ f = 1. For each
replication of the experiment, the loadings are drawn from the normal distribution γi0 ∼ N(0,1),
γi1 ∼ N(0,0.5), γi2 ∼ N(0,0.25). σi follows the inverse Gamma distribution: σ

−1
i ∼ Γ(5,1). The per-

sistence of the idiosyncratic parts is drawn from the uniform distribution κi ∼ U (κ,κ +0.2). In the
experiment, we vary the length of the observations T ∈ [20, 50, 100] and parameter κ ∈ [0, 0.3, 0.5].

For each setting of T and κ , we perform 100 experiments and evaluate the RMSE for the common
factor ft for the regularization parameter λ over a grid. The mean RMSEs as a function of λ are
displayed in Figure B2:

Again, for this application, we see that the value of the regularization parameter that achieves the
minimum RMSE is non-zero. This value is increasing in both the number of observations T (the
same effect as in the previous experiment) and in the value of κ , i.e., the persistence of the idiosyn-
cratic parts of the series.
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Figure B2: RMSE as a Function of the Regularization Parameter (Dynamic Factor Model)
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