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Finding the Optimal Currency Composition of Foreign Exchange
Reserves with a Quantum Computer

Martin Veselý ∗

Abstract

Portfolio optimization is an inseparable part of strategic asset allocation at the Czech National
Bank. Quantum computing is a new technology offering algorithms for that problem. The
capabilities and limitations of quantum computers with regard to portfolio optimization should
therefore be investigated. In this paper, we focus on applications of quantum algorithms to
dynamic portfolio optimization based on the Markowitz model. In particular, we compare
algorithms for universal gate-based quantum computers (the QAOA, the VQE and Grover adaptive
search), single-purpose quantum annealers, the classical exact branch and bound solver and
classical heuristic algorithms (simulated annealing and genetic optimization). To run the quantum
algorithms we use the IBM QuantumTM gate-based quantum computer. We also employ the
quantum annealer offered by D-Wave. We demonstrate portfolio optimization on finding the
optimal currency composition of the CNB’s FX reserves. A secondary goal of the paper is to
provide staff of central banks and other financial market regulators with literature on quantum
optimization algorithms, because financial firms are active in finding possible applications of
quantum computing.

Abstrakt

Optimalizace portfolia je v ČNB nedílnou součástí strategické alokace aktiv. Kvantové počítače
představují novou technologii, která nabízí nástroje pro tuto úlohu. Z tohoto důvodu, je vhodné
prozkoumat schopnosti a omezení kvantových počítačů právě v oblasti optimalizace portfolia.
V tomto článku se zaměřujeme na aplikace kvantových algoritmů pro dynamickou optimalizaci
portfolia vycházející z Markowitzova modelu. Konkrétně se zabýváme porovnáním algoritmů pro
univerzální kvantové počítače postavené na modelu kvantových hradel (QAOA, VQE a Groverovo
adaptivní vyhledávání), jednoúčelových kvantových annealerů, klasické exaktní metody větví
a mezí a klasických optimalizačních heuristických algoritmů (simulované žíhání a genetická
optimalizace). Kvantové algoritmy provozujeme v prostředí univerzálního kvantového počítače
IBM QuantumTM. Dále využíváme kvantový annealer od společnosti D-Wave. Optimalizaci
portfolia s pomocí kvantových algoritmů demonstrujeme na hledání optimální měnové struktury
devizových rezerv ČNB. Sekundárním cílem tohoto článku je vytvoření literatury ke kvantové
optimalizaci pro pracovníky centrálních bank a dalších regulátorů finančních trhů, jelikož finanční
instituce aktivně hledají možné aplikace kvantových počítačů.
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1. Introduction and Motivation

Over the last few years, knowledge of quantum computing has been penetrating the finance industry
(Orús et al., 2019; Egger et al., 2020). This development has naturally attracted the attention
of central banks and regulators (Hull et al., 2020). As Hull et al. (2020) is rather theoretical,
we tried to assess the practical capabilities of quantum computers ourselves (Veselý, 2022b).
Although the results concerning portfolio optimization with a quantum linear equation solver (the
HHL algorithm) and risk evaluation with quantum Monte Carlo were discouraging, a quantum
heuristic for quadratic unconstrained binary optimization (QUBO) – employed again in portfolio
optimization – worked as expected. We therefore decided to further investigate quantum QUBO
techniques. We will demonstrate them and assess their capabilities using dynamic portfolio
optimization, in particular optimization of the currency composition of the CNB’s FX reserves,
a highly important part of its strategic asset allocation process. Because of the latter, the paper
contributes to the discussion on optimal reserve currency composition, although our purely technical
approach to optimization is not intended as a replacement for expert judgment. On top of that, the
article serves as a practical guide to quantum QUBO algorithms for staff of central banks and other
financial market regulators.

Before we start our investigation of quantum QUBO algorithms in connection with portfolio
optimization, it is worth listing other possible applications of QUBO in finance and general
business. There are many problems which can be converted to optimization in a graph and finally
to quantum QUBO. Lucas (2014) provides a (non-exhaustive) list. An outstanding example of
graph optimization is the travelling salesperson problem, which can be employed to find arbitrage
opportunities, as shown by Orús et al. (2019). Besides graph problems, systems of linear equations
often arise in real world problems. Since the HHL algorithm designed by Harrow et al. (2009)
seems to be far from practical deployment, as noted by Childs (2009) and Aaronson (2015),
a linear system solver leveraging quantum QUBO was proposed by Wen et al. (2019). Linear
regression, another technique often used in finance, is a particular application of linear systems.
The evaluation of regression coefficients with quantum QUBO is discussed by Potok and Date
(2021). Linear systems can also be employed in the numerical solution of partial differential
equations in finance, for example in option pricing. For this purpose, a modification of a quantum
QUBO heuristic was proposed by Fontanela et al. (2021). An example of the application of
quantum computers in macroeconomics was presented by Fernández-Villaverde and Hull (2022),
who designed a QUBO-based algorithm for finding the optimal choice between consumption and
the capital level in a real business cycle model. Interestingly, quantum QUBO for factoring integers
to prime constituents was presented by Anschuetz et al. (2019) as a temporary replacement for the
algorithm designed by Shor (1994), which currently suffers from quantum hardware deficiencies.
Although integer factorization is not relevant for FX reserves management, it is important for the
security departments of banks and other institutions, because quantum factoring algorithms could
potentially break the RSA ciphering mechanism. This shortlist of possible applications shows the
importance of QUBO in finance and other fields. Interested readers can find a vast overview of
real-world QUBO applications outside finance (such as the pharmaceuticals and logistics industries)
employing quantum approaches in Yarkoni et al. (2022).

The focal point of this article, however, is portfolio optimization. There are several studies on
portfolio optimization employing quantum QUBO. In Elsokkary et al. (2017), it is simply stated
that portfolio optimization in Markowitz-like fashion can be carried out on a quantum computer.
The authors of the study used binary flags only, i.e. they found out whether to invest in a particular
asset or not. Rosenberg et al. (2016) worked with integer asset weights and showed how to impose
constraints via a penalty function. Palmer et al. (2021) demonstrated a technique for reducing
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a higher-order objective function, arising as a result of portfolio volatility targeting, back to a
quadratic one solvable with QUBO algorithms. In contrast to previous studies, the authors used
real-world data on the S&P 100 and S&P 500 equity indices. Mugel et al. (2022) added the time
dimension to make the portfolio optimization dynamic. Additionally, they provided a performance
comparison of some quantum techniques with classical ones and demonstrated the superiority of the
quantum approach for problems with more than 20 binary variables. Finally, Palmer et al. (2022)
presented a non-convex QUBO model for replication of a benchmark with a specified number of
securities from the benchmark (the “cardinality constraint”).

To perform our QUBO problem, we will first use methods for the simulation of spin-glasses (the
Ising model) on the IBM QuantumTM universal gate-based quantum computer, specifically the
Quantum Approximate Optimization Algorithm (QAOA) designed by Farhi et al. (2014) and the
Variational Quantum Eigensolver (VQE) proposed by Peruzzo et al. (2014). We will also employ
a single-purpose quantum computer intended only for solving QUBO problems – the quantum
annealer provided by D-Wave. These three techniques are known as the adiabatic approach.

As pointed out by Preskill (2018), adiabatic approach-based algorithms seem to be the first
real-world applications of quantum computers. However, their main disadvantage is unproven
speed-up. Despite this fact, several studies (Ding et al., 2023; Harwood et al., 2021; Egger et al.,
2021; Mugel et al., 2022; Fernández-Villaverde and Hull, 2022) indicated that in particular instances
the algorithms perform better than, or at least equally well as, their classical counterparts. On the
other hand, Mandra et al. (2017) questioned the claimed advantages of the adiabatic approach.
The study also emphasized that often only the simulated annealing developed by Metropolis
et al. (1953) is used as a benchmark in the performance assessment of adiabatic approach-based
algorithms. Schuld and Killoran (2022) took a “Goldilocks” stance that further research is needed,
especially once quantum computers with a higher number of qubits become available. Tasseff et al.
(2022) also pointed out the need for further research and provided empirical evidence of the better
performance of the D-Wave quantum annealer in hardware-tailored benchmark problems. The
discussion above indicates that there is no consensus on the capabilities of the algorithms. To shed
more light on this issue, we will assess the performance of adiabatic approach-based algorithms
ourselves. We will expand the set of classical algorithms used in the comparison to include the
branch and bound exact solver designed by Land and Doig (1960) and the genetic-based heuristic
algorithm proposed by Rechenberg (1973) and Schwefel (1977). To compare the QUBO approach
to portfolio optimization with classical continuous quadratic programming, we will also employ the
classical continuous gradient method.

Besides the algorithms described above, we will also test the algorithm proposed by Gilliam et al.
(2021) based on the quantum database searching developed by Grover (1996). In contrast to
adiabatic approach-based algorithms, the Grover algorithm offers proven quadratic speed-up, as
does the derived QUBO algorithm. To the best of our knowledge, there is no study concerning
the practical capabilities of the Grover QUBO optimizer. We will therefore address this gap in our
paper.

Interestingly, all the studies on portfolio optimization mentioned above work with equity market
data. We will use currency market data instead to find out whether there is any impact on the
performance of quantum algorithms, particularly those without rigorously proven speed-up.

We tested all the algorithms discussed above on the currency composition optimization of the CNB’s
FX reserves. We found that the best performance from the perspective of both run time and ability to
find the global optimum is offered by the hybrid heuristic (exploiting a combination of the classical
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and quantum approaches) provided by D-Wave. Moreover, the hybrid heuristic is mature enough to
allow us to test a problem of practical size. In the cases of the VQE and the QAOA, we tested only
toy models on real quantum hardware. Grover adaptive search was tested only on a simulator due
to the limited number of qubits on the available quantum processors. The exact branch and bound
algorithm is able to find the solution to the QUBO version of the problem provided that we have
enough memory (more than 8 GB RAM), but the run time is still several hours. Interestingly, we
found that the gradient solver implemented in MS Excel outperforms all of the algorithms tested
(both the classical and the quantum ones) once the problem is formulated as a continuous problem.
Therefore, we concluded that carrying out portfolio optimization with the QUBO approach is not
the best option, at least for the time being. However, as portfolio optimization in binary form
seems to be a hard-to-solve problem, it can serve as a testing problem for new algorithms or for the
measurement of progress in quantum hardware development.

Our results do not lessen the role of quantum computing in finance. We have to bear in mind that
quantum computers are not a fully mature technology yet. We need to wait several years, track the
development of technology, build up our “quantum knowledge” and then pass a final verdict on the
usefulness of quantum computers for finance applications. We should also critically assess which
financial problems quantum computers are a suitable option for and whether classical computing
may offer better algorithms.

The rest of this paper is organized as follows. The second section provides the basics on the
application of QUBO in portfolio optimization, the third section introduces the quantum algorithms
employed and briefly discusses classical ones, the fourth section details the currency composition
optimization problem and discusses the data used and the results, and finally the fifth section
concludes. Note that the basics of quantum computing and the necessary mathematical background
and notation are provided in our previous article (Veselý, 2022b).

2. Quadratic Binary Portfolio Optimization

In our research, we employ portfolio optimization based on quadratic programming as introduced
by Markowitz (1952). The model assumes real (continuous) weights on the assets. However,
quantum computers are not able to work with real variables at their current stage of development.
Durr and Hoyer (1996) presented a basic idea of how the quantum database search designed by
Grover (1996) could be used for minimization of a general function but on a discrete domain.
Hence, this algorithm would need too many qubits to approximate a continuous function sufficiently.
Moreover, the algorithm assumes the existence of quantum memory (qRAM), which is currently
rather an experimental device – see the discussion in Veselý (2022b) for details. Ayub et al. (2020)
showed that a quantum continuous optimization algorithm based on Grover search would reduce
the time T needed to find the global extreme of a function in the classical case to

√
T ln(T ).

However, the authors did not provide any technical detail on the construction of the algorithm.
Verdon et al. (2019) introduced a quantum version of the gradient descent method based on the
Quantum Approximate Optimization Algorithm of Farhi et al. (2014), but the authors stated that
implementation of the algorithm is beyond the capabilities of current quantum computers. This short
investigation therefore shows that the original continuous quadratic program used in the Markowitz
model has to be modified to one with binary variables (in particular QUBO) in order to be carried
out on current quantum computers.

In Veselý (2022b) we provided a toy model of portfolio optimization with QUBO and found that
such optimization runs successfully on IBM QuantumTM processors. In this part, we will expand
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the toy model to “real world” dynamic portfolio optimization with discrete time steps. As discussed
by Mugel et al. (2022), there are also static and continuous-time versions of portfolio optimization.
However, the discrete-time version is of greater practical value because the static version assumes
immutability of portfolio composition, a condition that is hardly fulfilled in practice, and the
continuous version works with the unrealistic assumptions that the portfolio changes in each
infinitesimal time moment and that assets are perfectly divisible.

The QUBO Problem in General

Before turning to the particular application of QUBO in portfolio optimization, it is worth reminding
ourselves of the general form of the QUBO problem. Let us denote A ∈ Rn,n, b ∈ Rn (a column
vector), x ∈ {0;1}n (a column vector composed of n binary variables) and c ∈R. With this notation,
the QUBO problem is defined as

1
2

xT Ax+bT x+ c→min . (1)

The problem (1) can be rewritten in “sum form”

1
2

n

∑
i=1

n

∑
j=1

ai jxix j +
n

∑
i=1

bixi + c→min . (2)

Naturally, the QUBO problem does not involve any constraint. However, in real-world applications,
constraints are often required. To incorporate them, a penalty function is added to function (2) and
increases its value if any constraint is not fulfilled. Techniques for the construction of the penalty
function are discussed by Yarkoni et al. (2022).

Portfolio Optimization with QUBO

If matrix A is replaced with the asset return covariance matrix C ∈ Rn,n and multiplied by
coefficient λ ≥ 0 expressing risk aversion, vector b is substituted with average asset returns
r ∈ Rn and multiplied by -1 to maximize the returns and c = 0, we get the optimization problem
−rT x+ λxT Cx→ min, which is nearly the portfolio optimization model proposed by Markowitz
(1952). To have the model complete, we have to add a budget constraint pT x≤ B, where p ∈ Rn is
a vector of the money amounts invested in the assets and B ∈R is the total budget. We can consider
that the whole budget is allocated, i.e. xT p−B = 0, which leads to the optimization problem

− rT x+λxT Cx+F(pT x−B)2→min, (3)

where F is the importance of the budget constraint. The value of F should be sufficiently large so
that the objective function value is prohibitively high for infeasible solutions.

Still, this binary form of Markowitz optimization only tells us whether to invest in a particular asset
(xi = 1) or not (xi = 0). However, in practice we want to know the asset weights. To introduce real
weights instead of binary flags and at the same time preserve the binary nature of the optimization,
we follow the suggestion of Mugel et al. (2022) and define the weight of the ith asset as a binary
fraction wi = ∑

`
k=1 2−kx(k)i . Parameter ` is the number of bits dedicated to expressing the weight and

x(k)i is a binary variable containing the kth decimal place of the weight.
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Replacing the binary flags xi in (3) with weights wi leads to the Markowitz portfolio optimization
with real asset weights1

−
n

∑
i=1

ri

`

∑
k=1

2−kx(k)i +λ

n

∑
i=1

n

∑
j=1

ci j

( `

∑
k=1

2−kx(k)i

)( `

∑
k=1

2−kx(k)j

)
+F

( n

∑
i=1

pi

`

∑
k=1

2−kx(k)i −B
)2
→min .

(4)
Note that we ignored the sign of weight wi. Introducing the sign is possible,2 but we will assume
that short positions are forbidden, hence we can assume that the weights are non-negative. Thanks
to the approach used to binarize the weights, it holds that wi ∈ 〈0;1〉 ∀i, which is the set of constraints
used in the Markowitz model.

To make the problem independent of the budget volume B, we set B= 1 and pi = 1 ∀i, which changes
the budget constraint to ∑i wi = 1. This is another constraint generally used in Markowitz portfolio
optimization. Problem (4) also ignores the time dimension of the portfolio optimization. It is
common in practice to rebalance the portfolio periodically because of changes in a benchmark, or to
radically change the portfolio composition during or after major crises. This can be reflected in the
optimization by introducing a time-dependent covariance matrix and returns and adding other binary
variables containing asset weights for time t = 1,2 . . .T . What is more, any change in the portfolio
structure leads to transaction costs, which we naturally want to minimize. The costs are proportional
to the changes in asset weights between time periods t− 1 and t. We therefore introduce variables
x(k,t)i expressing the kth decimal place of the ith asset weight at time t. Note that x(k,0)i = 0 ∀i,k.3 The

costs incurred in connection with changing the position in the ith asset are ν
(t)
i |∑

`
k=1 x(k,t)i −x(k,t−1)

i |,
where ν

(t)
i are unit transaction costs. To preserve the QUBO nature of our optimization problem,

we replace the absolute value with the square. After the inclusion of independence of the absolute
budget volume, the time dimension and transaction costs, problem (4) is transformed to

T

∑
t=1

[
time dimension

−
n

∑
i=1

r(t)i

`

∑
k=1

2−kx(k,t)i return

+λ

n

∑
i=1

n

∑
j=1

c(t)i j

( `

∑
k=1

2−kx(k,t)i

)( `

∑
k=1

2−kx(k,t)j

)
risk

+µ

n

∑
i=1

ν
(t)
i

[ `

∑
k=1

2−k(x(k,t)i − x(k,t−1)
i

)]2
transaction costs

+F
( n

∑
i=1

`

∑
k=1

2−kx(k,t)i −1
)2

sum of weights equal 1]
→min .

(5)

Note that parameter µ ≥ 0 is the sensitivity of a portfolio manager to the transaction costs. Problem
(5) is the final version of the discrete-time dynamic unconstrained binary portfolio optimization

1 In fact, the weights are not real but only rational because of the finite number of binary variables expressing them.
However, this is also the case with “real” numbers in classical computing, as memory is always finite.
2 Potok and Date (2021) advise rewriting the weight as wi = ∑

`
k=1 2−kx(k),pos

i −∑
`
k=1 2−kx(k),neg

i .
3 This means that the portfolio is composed of cash only at time t = 0.
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based on the Markowitz model. Note that the more convenient matrix form of (5) is provided in
Appendix A.

Computational Complexity

We now turn our attention to the computational complexity of the problem introduced above. QUBO
is an exponentially complex problem on a classical computer, as adding one binary variable doubles
the possible inputs of the objective function.4 It may seem that by moving from the continuous
to the QUBO version, we have made the problem harder, but any general problem of quadratic
programming with real variables is exponentially complex on a classical computer, as proved by
Vavasis (1990) and Vavasis and Pardalos (1991). On the other hand, if matrix A in the objective
function (1) is positive definite and the constraints are convex, the quadratic program can be solved
in polynomial time, as shown by Kozlov et al. (1980) and Ye and Tse (1989).

A covariance matrix is positive definite. However, adding a general penalty function can lead to an
objective function with an indefinite matrix. Especially in this most difficult version of the problem,
quantum algorithms could offer speed-up. What is more, if we were able to show speed-up even
for cases that a classical computer can solve in polynomial time (such as the one we present in this
paper), we would have stronger empirical proof of better performance of quantum algorithms in
some cases of quadratic programming and we would therefore show that they are useful in portfolio
optimization in general.

3. Algorithms for QUBO

This part is devoted to describing algorithms for solving QUBO problems. First, we will discuss
the classical algorithms which we compare the quantum ones with. After that, we will describe
the QAOA and VQE quantum variational algorithms intended for a universal gate-based quantum
computer. We will then describe D-Wave’s quantum annealer, the physical realization of the
adiabatic approach. Finally, a QUBO algorithm based on Grover database quantum searching will
be discussed.

3.1 Classical Algorithms

In this subsection we will present classical methods for quadratic optimization. The first one, the
gradient method, is intended for solving continuous problems, because the original Markowitz
model works with continuous variables. The method will serve as a benchmark allowing us to
decide whether the transformation of Markowitz continuous portfolio optimization to QUBO and
the application of quantum computers confers any advantage.

As noted in the previous part, QUBO is an exponentially complex problem on a classical computer.
This renders an exhaustive search for the solution (the brute force method) impossible. Therefore,
more sophisticated algorithms have been devised. First, we will describe the branch and bound
algorithm, which is an exact solver for integer programming. Then, we will discuss two optimization

4 We use the term exponentially complex rather loosely. The precise statement should be that the problem belongs
to the NP complexity class. By stating that the problem is exponentially complex, we mean that currently there is
no known algorithm capable of solving the problem in polynomial time. But this does not exclude the possibility
of such an algorithm being discovered in the future, as whether P = NP or P 6= NP remains unresolved. Note
that we will use this simplification in the rest of the paper to reflect the current capabilities of computational tools.
Readers interested in learning more about complexity theory can consult Nielsen and Chuang (2010), chapter 3.



8 Martin Veselý

heuristics, namely simulated annealing and genetic optimization. Note that unlike the branch and
bound method, these heuristics are only able to find sub-optimal solutions, as they are based on
random searching in the problem domain.

Besides the above-mentioned algorithms, there is a plethora of other QUBO heuristics and exact
solvers. Interested readers can consult the overview by Kochenberger et al. (2014). There are
also several software packages intended for solving optimization problems including QUBO, for
example CPLEXTM provided by IBM (2022) and XPRessTM offered by FICO (2022). An open
source alternative is BiqCrunch designed by Krislock et al. (2017).

Gradient Method

As noted above, we include gradient optimization among the classical methods for comparing
the QUBO approach to portfolio optimization with continuous quadratic programming. For our
purposes we will use the implementation of the method in the MS Excel solver. We will not discuss
the method further, because it is widely known and long established.5 Interested readers can find
details in Lemaréchal (2012).

Branch and Bound Algorithm

This algorithm was proposed by Land and Doig (1960) and was originally intended for integer
optimization. As binary optimization is a special case of integer optimization, the algorithm can be
used for QUBO as well.6

The main idea behind the algorithm is to cut off parts of a problem domain that offer no improvement
of the objective function value found so far. First, the problem is solved with no integer constraints
imposed on the variables. Once the solution is reached, the problem domain is divided into two
subsets and a special constraint for some variable xi is added for each subset. Assume that a is
an integer part of the value of variable xi. Then constraint xi ≤ a is added for the first subset and
xi≥ a+1 for the second one. A similar approach can be employed in the case of binary optimization.
However, the constraints are simpler: constraint xi = 0 is added for one subset and constraint xi = 1
for the other. The lower bound of the objective function is calculated for each subset, and the subset
with the higher bound is no longer taken into consideration. This effectively reduces the size of the
domain which has to be searched for the optimal solution. The process is repeated until the optimal
solution is found.

Note that the branch and bound algorithm can degenerate into the brute force method. This means
that in the worst case it exhibits exponential complexity, as discussed by Thakoor et al. (2009).
The algorithm is exact, that is, it guarantees that the optimal solution will be always found, but, as
already mentioned, sometimes at the cost of a long run time.

We will use the implementation of the algorithm in the CPLEXTM software package provided by
IBM (2022). The product has a free version with the number of variables and constraints limited to
1,000. Nevertheless, this is sufficient for our purposes.

5 The method was proposed by the famous French mathematician Louis Augustin Cauchy back in 1847.
6 See the application of the branch and bound algorithm to the travelling salesman problem by Little et al. (1963).
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Simulated Annealing

The first heuristic intended for QUBO, simulated annealing, is inspired by the cooling of a hot
material. The algorithm was first proposed by Metropolis et al. (1953) for finding thermal
equilibrium in chemical processes. Later, it was improved by Corana et al. (1987) for the
optimization of general continuous functions. Many special-purpose adaptations of the algorithm
have been designed, for example for simulations in statistical physics (Scharf and Izrailev, 1990)
and for portfolio optimization (Veselý, 2020). For some problems with an objective function
defined on discrete domains, including binary optimization problems, the investigation carried out
by Bertsimas and Tsitsiklis (1993) revealed superior behaviour of the algorithm in comparison with
other heuristics.

The principle of simulated annealing can be briefly described as follows. As a material cools
down, the particles the material is composed of find new positions so that the total energy stored
in the material is the lowest possible. The configuration can be likened to a bit string composed
of binary variables and the energy to the respective value of the objective function. The new
configuration is found by means of random changes in the configuration of the particles. To avoid
getting stuck in local minima of the objective function, a configuration with higher energy (i.e. a
worse solution) is sometimes allowed.7 The particular implementation of the random changes
(known as the noise operator), the cooling schedule (defining the speed of cooling) and the rule
for temporary acceptance of a higher energy configuration can be various. We will use our own
implementation of the simulated annealing algorithm based on the studies listed above and adapted
to binary optimization. Technical details of the implementation are available in Appendix B, and
the source code is provided by Veselý (2022a).

Genetic Optimization

The second heuristic, genetic optimization, is based on the simulation of an evolutionary process.
Interestingly, the idea of solving computational problems with a biologically inspired system
appeared in Turing (1950). He was trying to contradict the statement that a calculation machine
cannot think, as expressed by Lovelace (1843), among others, and proposed a computational model
based on the mind of a child trying to find a solution to a problem by trial and error, similarly to the
evolutionary process. Evolution-based algorithms were investigated more seriously by Rechenberg
(1973) and Schwefel (1977). Since then, many genetic algorithms have been proposed. A vast
overview of these techniques is provided by Katoch et al. (2021).

In a nutshell, the genetic approach works as follows. The bit string representing the argument
of the objective function is considered to be the genome of an organism. The objective function
value assigned to the argument is a measure of the fitness of the organism. The goal of genetic
optimization is to modify the genome so as to achieve the best possible fitness. To do so, mutation
and crossing operators are introduced. The mutation operator randomly changes the genome; for
example, it flips a randomly chosen binary variable(s). The crossing operator picks up two or
more organisms from the population (i.e. the set of bit strings with “good fitness”) according
to a predefined scheme and returns a combination thereof. If the fitness of the newly produced
organism is better than that of the organisms “created” so far, it becomes a member of the
population. Organisms with worse fitness are removed from the population. The exact definitions
of the mutation and crossing operators and the rules for adding and removing organisms from the

7 This is a natural process occurring in any matter caused by fluctuations at the atomic level.
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population depend on the particular genetic algorithm. We will use the implementation of the
algorithm provided by Mirjalili (2018).

3.2 Quantum Adiabatic Approach

The quantum computer was originally proposed by Feynman (1985) as a tool for simulating
quantum systems, a problem that is exponentially complex on a classical computer. Later,
Feynman’s proposal was investigated by Lloyd (1996), who conjectured that quantum systems
could in some cases be simulated in polynomial time on a quantum computer. Although Lloyd’s
conjecture remains unproven,8 if we can figure out how to convert an optimization problem (QUBO
in our case) into the simulation of a quantum system, we can exploit the potential power of quantum
computers (see the list of articles in the Introduction providing empirical evidence that quantum
computers can solve some optimization problems faster than their classical counterparts).

To carry out a quantum system simulation, the quantum computer has to get a description of
the system. In quantum physics, such description is the Hamiltonian (or energy operator). It
characterizes the allowed energy levels of the system and the energy the system takes on at a
particular level. Among energy levels, a special place is dedicated to the ground state, the state with
the lowest possible energy and associated with the optimal solution of the optimization problem. In
mathematical terms, the Hamiltonian is generally a Hermitian operator. However, in the following
text, we will assume the Hamiltonian to be a Hermitian matrix H . The energy of the quantum
system described by H being in state |ψ〉 is given by the expression E = 〈ψ|H |ψ〉.9

A special kind of Hamiltonian is the Ising Hamiltonian, defined as

HIsing =
n

∑
i=1

n

∑
j=1

Qi jZi⊗Z j +
n

∑
i=1

ciZi, (6)

where Zi denotes a quantum gate composed of a Z gate applied to the ith qubit and identity operators
applied to the other qubits, and term Zi⊗Z j means a quantum gate composed of two Z gates applied
to the ith and jth qubits while identity operators are applied to the other qubits and Qi j,ci ∈ R.10

There is a clear resemblance between the Ising Hamiltonian (6) and the general QUBO problem (2).
The ground state of the Ising Hamiltonian (6) can be identified with the optimal solution of problem
(2). This means that we have translated the QUBO problem to the simulation of a quantum system.
Technical details of the translation, mainly the relations between the coefficients and variables in
the QUBO problem (2) and the Ising Hamiltonian (6), are provided by Lucas (2014).

The next step is to simulate the Ising Hamiltonian and search for its ground state.11 To do
so, we leverage the adiabatic theorem. Assume that the quantum system is described by the

8 Aharonov et al. (2022) showed that random circuit sampling, a problem for which Google has claimed a quantum
advantage and which until recently was considered to be exponentially complex, can be solved under specific
circumstances in polynomial time, although the polynomial is of high degree. This may increase the doubts about
Lloyd’s conjecture, but further research is still necessary.
9 For more information on Hamiltonians, see Nielsen and Chuang (2010), chapter 2.2.2. For details concerning the
simulation of quantum systems, see de Wolf (2022), chapter 9.
10 A more precise term than gate would be operator, because Hamiltonian simulation can be carried out on a general
quantum computer, not only on a gate-based machine. However, despite the name, a Z operator and a Z gate are
mathematically the same object.
11 Lloyd (1996) included a system described with Ising Hamiltonians among examples of quantum systems that
could be simulated on a quantum computer with exponential speed-up if his conjecture is confirmed.
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initial Hamiltonian H0 at time t = 0. At the same time, the system is in the ground state of H0.
Subsequently, the Hamiltonian of the system is changed. At time t ∈ 〈0;1〉, the system is described
by the Hamiltonian

H (t) = (1− t)H0 + tH1. (7)

If the change is slow enough, the system remains in the ground state of H (t) for any t. This
means that finally (i.e. at time t = 1) the system is in the ground state of H1. In our case, we set
H1 = HIsing.

Let’s turn our attention to Hamiltonian H0. If H0 is simple enough, we are able to determine its
ground state analytically. Such simple Hamiltonian is

H0 =
n

∑
i=1

Xi, (8)

where Xi denotes a quantum gate composed of an X gate applied to the ith qubit and identity
operators applied to the other qubits. The ground state of Hamiltonian H0 is the uniformly
distributed superposition 1√

2n ∑
2n−1
i=0 |i〉, where |i〉 is the ith basis state of a quantum system composed

of n qubits. Knowing the ground state of H0 and employing the adiabatic theorem enables us to
find out the ground state of HIsing associated with the optimal solution of the QUBO problem. For
a better understanding of how simulation based on the adiabatic theorem works, see the analogy in
Box 1.

Box 1: Adiabatic Theorem Analogy
The adiabatic theorem can be explained with an analogy. Assume we have a sheet of paper scattered with iron
filings. This is our system described by the initial Hamiltonian H0. If no external force is applied, the system
remains unchanged. Imagine that we slowly move a magnet under the sheet. The filings begin to move and follow
the magnetic lines of force. In the end, we will see a typical pattern on the sheet – the iron filings oriented in the
direction of the external magnetic field. This is the system described by the final Hamiltonian H1. The systems
that exist when the magnet is only partially under the sheet are described by Hamiltonians H (t). We now turn our
attention to the requirement of carrying out the changes slowly. If we move the magnet quickly, some of the filings
remain stuck because of friction between them and the sheet. Clearly, these filings resist the magnetic field and
they have to have enough energy to do so. As additional energy is needed, the system is clearly not in its ground
state. However, slow changes allow the filings to adapt to the increasing magnetic force without getting stuck,
hence they need less energy. In other words, the system remains in the ground state all the time.

3.3 Variational Algorithms and Quantum Annealers

The previous section provided the theoretical framework for the simulation of Ising Hamiltonians
and equivalent QUBO problems. However, this approach has to be implemented on a real quantum
computer, which we will discuss in this part. First, we will present algorithms intended for a
gate-based universal quantum computer (variational algorithms) and then we will turn our attention
to a single-purpose quantum annealer.

Variational Algorithms

Aharonov et al. (2007) showed that the adiabatic and universal gate-based quantum computing
models are equivalent.12 This means that algorithms can be designed for a gate-based quantum
12 To be precise, Aharonov et al. (2007) stated that the model of adiabatic computation is polynomially equivalent
to the standard model of quantum computation. On the other hand, Preskill (2018) pointed out that this conclusion
is valid only for noiseless qubits, and at the cost of adding a high number of ancilla qubits despite the polynomial
equivalence.
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computer implementing the above-described simulation of Ising Hamiltonians. What is more, the
equivalence of the models allows us to expect that algorithms based on the adiabatic model will
provide exponential speed-up if the conjecture by Lloyd (1996) is confirmed. At present, we have
to assume that those algorithms offer unproven speed-up, but, as discussed in the Introduction, they
show promising results in terms of improved computational time for some specific problems. In
what follows, we describe two algorithms intended for solving QUBO problems and developed for
gate-based quantum computers.

The first is the Quantum Approximate Optimization Algorithm (QAOA) introduced by Farhi et al.
(2014) and improved for some kinds of QUBO problems (including portfolio optimization) by
Egger et al. (2021). The second is the Variational Quantum Eigensolver (VQE) developed by
Peruzzo et al. (2014) and improved by Barkoutsos et al. (2020). Both algorithms are hybrid,
which means that they combine the classical and quantum approaches. While the evolution of the
quantum system state (the hard part) runs on a quantum computer, the calculation of the energy of
the quantum state (the easy part) runs on a classical computer. In the first step, a circuit describing
the Hamiltonian H (t) is constructed. Because of parameter t, the circuit has to be parametric as
well. Moreover, we have to ensure that the simulation runs slowly to preserve the assumption of the
adiabatic theorem. This all means that we have to run the simulation several times with different
parameters and find the circuit describing the simulation of H (t) in the best possible way. In other
words, we solve the classical optimization problem E = 〈ψ(θ)|HIsing|ψ(θ)〉 → minθ , where θ is a
vector of parameters figuring in the quantum circuit. Since an Ising Hamiltonian comprises only
two-body interactions, there is a technique described by Barkoutsos et al. (2020) allowing us to
calculate E efficiently on a classical computer. The result of the optimization is the vector θoptim
allowing us to construct a circuit for finding the ground state of HIsing.

Figure 1: QAOA Single-Layer Circuit for Two-Variable QUBO Problem

Note: Qubits q0 and q1 represent binary variables x0 and x1 respectively. The Hadamard gates H prepare a
uniformly distributed quantum state. Then the Ising Hamiltonian is applied: the Rz gate on qubit q0 together with
the two CNOT gates represent a quadratic term x0x1, and the other Rz gates are connected with linear terms x0 and
x1. The Rx gates are related to the initial Hamiltonian H0. Note that the Rx and Rz gates are the exponentials of
the X and Z gates figuring in the initial and Ising Hamiltonians respectively. Coefficients Qi j and ci in the Ising
Hamiltonian and parameters β j and γ j are hidden in the rotational angles of the Rx and Rz gates, i.e. θ1 . . .θ5.
Source: Adapted from the result obtained in the IBM QTM environment

Both the QAOA and the VQE are based on the approach described above, but they differ in the
circuit employed for finding the ground state. The QAOA uses a circuit described with the quantum
gate

U(β ,γ) =
p

∏
j=1

e−iβ jH0e−iγ jHIsing , (9)

where p is the number of circuit layers and β j and γ j are parameters connected with the jth layer of
the circuit. Number p is a user-defined value. Increasing p leads to a higher probability of finding
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the optimal solution, but also increases the complexity of the circuit. For p→∞, finding the optimal
solution is guaranteed, but for finite p, the algorithm is only a heuristic. An example of a QAOA
circuit is provided in Figure 1.

As can be seen from equation (9) and Figure 1, the structure of the Hamiltonian H (t) is reflected
in the quantum circuit. In contrast, the composition of the VQE circuit is very different. The circuit
is built from several layers of controlled Z gates and Ry gates. The rotational angles of Ry serve as
the optimized parameters θ . The structure of the Ising Hamiltonian is not reflected in the circuit.
Because of this, the VQE is more general, and the QAOA can be considered a special case of it. An
example of a VQE circuit is provided in Figure 2.13

Figure 2: VQE Double-Layer Circuit for Three-Variable QUBO Problem

Note: The circuit has two parts – an initial layer composed only of Ry gates and at least one layer composed of Ry
gates and controlled Z gates. The latter interconnects the qubits and enables the VQE to take the quadratic terms in
the QUBO problem into account. The rotational angles of the Ry gates are optimized so that the circuit simulates
the quantum system described by the Ising Hamiltonian and finds its ground state.
Source: Adapted from Barkoutsos et al. (2020)

Quantum Annealers

Besides variational algorithms for universal gate-based quantum computers, single-purpose quantum
annealers exploiting the adiabatic approach have been devised. In this part we will focus on the
annealers provided by D-Wave.

D-Wave annealers are in fact a quantum processor based on superconducting qubits.14 For each
qubit, it is possible to set the probability amplitudes of states |0〉 and |1〉 – the bias. Pairs of
qubits can be connected together with couplers to prepare an entangled state.15 The probability
amplitudes of the basis states that the entangled state is composed of can be set by manipulating
the coupler strength. Setting the biases and strengths enables one to programme a Hamiltonian
into the annealer. The annealer function is again based on the adiabatic theorem. First, the initial
Hamiltonian H0 is programmed into the annealer, which is then set to be in state 1√

2n ∑
2n−1
i=0 |i〉. In

the next step, the biases and strengths are slowly changed so that the annealer behaves according to
the Hamiltonian H (t). At the same time, it remains in the ground state of H (t). In the end, only
the Ising Hamiltonian describes the annealer behaviour. Finally, a measurement is carried out to get
the ground state of the Ising Hamiltonian (i.e. the solution of the QUBO problem).

13 The VQE circuit is often called ansatz (an educated guess), because after proper parametrization it can be used
for simulating a quantum system and finding its ground state.
14 See Kjaergaard et al. (2020) for more on superconducting processors.
15 Note that because of the special topology of the processor, there is no all-to-all connectivity among the qubits.
As a result, more than two qubits can be involved in the quadratic terms of an objective function.
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As with any other quantum computation, superposition and entanglement are involved in the
described process. On top of that, the phenomenon of quantum tunnelling plays a role as well.
Quantum tunnelling allows the annealer to get out of local minima – “valleys” – by tunnelling
through the “walls” of the valley (see Box 2 for more about quantum tunnelling).

Box 2: Quantum Tunnelling
In the classical world, it is impossible for a particle to go through an energy barrier. To overcome the barrier, the
particle has to gain a sufficient amount of energy from an outside source. However, in the quantum world, the
particle can “borrow” the energy ∆E for time ∆t. It holds that the higher the energy, the shorter the time for which
the energy can be “borrowed”. With the “borrowed” energy, the particle overcomes the barrier and then the energy
is “redeemed”. This process is a consequence of Heisenberg’s relations of uncertainty. In this particular case, the
second relation ∆E∆t ≥ h/(4π) plays a role. Note that h is the Planck constant (h = 6.6261×10−34m2kgs−1).

It is worth noting that due to quantum fluctuations the annealer does not have to remain in the ground
state of the Hamiltonian H (t) all the time. As a result, the solution is only a sub-optimal one and
quantum annealers have to be considered a heuristic tool similar to the QAOA and the VQE.

D-Wave also offers hybrid heuristics. This approach combines classical heuristic algorithms with
quantum annealing. For example, the output of classical heuristics is used as the initial solution for
the quantum annealer. The problem can also be broken down into sub-problems and each part solved
with a different algorithm – classical or quantum. Finally, the sub-problem results are combined to
get the solution of the complete problem. D-Wave offers hybrid heuristics for both unconstrained
and constrained optimization.16

D-Wave (2018) provides a detailed description of quantum annealers. Further information on
D-Wave hybrid heuristics is presented in D-Wave (2022a). Complete documentation for the D-Wave
LeapTM and OceanTM development environments is provided in D-Wave (2022b). The source codes
used in our tests are available at GitHub (Veselý, 2023).

3.4 Grover Adaptive Search

In this section, we will discuss the QUBO method based on the algorithm designed by Grover
(1996). Originally, the algorithm was intended for fast search in an unordered database, i.e. a
database without an index or a special structure. As we have no index, with a classical computer
we have to go through the database records one by one and check whether the record currently
picked out is the one we are searching for. In the worst case, the searched record is the last one.
Clearly, the problem has linear complexity O(N), where N is the number of records. With Grover
quantum search, the complexity drops to O(

√
N), i.e. the algorithm provides quadratic speed-up.

Unfortunately, the practicality of the Grover algorithm for database searching was questioned by
Viamontes et al. (2005).

Notwithstanding the practical limitation connected with the original purpose of the algorithm, based
on ideas presented by Durr and Hoyer (1996), the Grover algorithm was modified to serve as a
QUBO algorithm by Gilliam et al. (2021). In contrast to adiabatic approaches, the Grover algorithm
offers proven quadratic speed-up. The complexity of QUBO is exponential (O(2n), n being the
number of variables) on a classical computer. The Grover algorithm thus reduces the complexity to
O(2n/2), which is still exponential in n, but any improvement helps. However, it is important to note
that in the current era of noisy quantum computers, the Grover algorithm is not able to provide the

16 In our case, the constrained heuristic allows constraint ∑i w(t)
i = 1 ∀t to be expressed outside the objective

function.
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declared quadratic speed-up. As shown by Chen et al. (2022), its complexity remains the same as
in the case of a classical unstructured search algorithm.17

Figure 3: Illustration of Grover Algorithm Action

Note: Assume that we want to find a record identified with state |011〉 (highlighted in violet). In the first iteration,
a uniformly distributed superposition of all the records is prepared (i.e. the probability of measuring any basis
state is 12.5%, or the probability amplitude is 0.3536). Next, the probability amplitude of state |011〉 is inverted.
This leads to a decrease in the average probability amplitude (depicted with a dashed black line). After that, the
probability amplitudes are “mirrored” around the average. The quantum state gained is inputted into the second
iteration. Then marking and “mirroring” is carried out again. As a result, the probability amplitude of state |011〉
is close to 1. We found the desired record after two iterations. On a classical computer, the search could take up to
eight iterations.
Source: Author’s own creation

First, we will outline how the original Grover algorithm works. Assume that a database contains
N = 2n records, where n is the number of qubits used for representation of the database records. First
of all, superposition 1√

2n ∑
2n−1
i=0 |i〉, containing all the database records with the same probability,

is prepared. The next step is to mark the basis state representing the record we are searching
for by inverting its probability amplitude. As a result, the average probability amplitude of the
quantum state decreases. After that, all the probability amplitudes are “mirrored” around the average
amplitude. This leads to an increase in the probability amplitude of the marked state and a decrease
in the other amplitudes. The marking and “mirroring” steps are repeated until the probability
17 Interestingly, this holds for any algorithm offering quadratic speed-up, including quantum Monte Carlo.
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amplitude of the marked state is not close to 1. Finally, the qubits are measured to reveal the
marked state, or in other words to return the database record we were searching for. Note that for
a database with N records, we have to repeat the marking and “mirroring” R = dπ

√
N/4e times.

The described process is graphically illustrated in Figure 3 on a search for state |011〉 in a database
containing eight records.

We now turn our attention to the technical realization of the Grover algorithm. The circuit
implementing the algorithm is depicted in Figure 4. Without loss of generality, we will assume
that we are searching for record |011〉 in a database stored within three qubits. We refer to those
qubits as working qubits. At the beginning, the working qubits are set to be in equally distributed
superposition with Hadamard gates. Regardless of the number of working qubits, one ancilla qubit
is added. The ancilla is initialized to state |−〉. This means that at the beginning, the quantum
computer is in state

|ψinit〉=
( 1√

8

7

∑
i=0
|i〉
)
⊗|−〉. (10)

After that, a so-called oracle is applied to mark the record we are searching for. In fact, the oracle is
a multi-qubit controlled X gate negating the target qubit if a logical expression based on the control
qubits values is true. In our example, the oracle negates the ancilla if the working qubits are in state
|011〉, otherwise the ancilla remains unchanged. Negation of |−〉 leads to state −|−〉, hence state
|ψinit〉 is changed to18

|ψoracle〉=
( 1√

8 ∑
i∈{0,1,2,4,5,6,7}

|i〉− 1√
8
|011〉

)
⊗|−〉. (11)

Figure 4: Grover Algorithm Circuit

Note: Panel A depicts a general Grover algorithm circuit for three working qubits. The part of the circuit between
the dashed lines (i.e. the oracle and the diffusion operator) is repeated R times. Note that w stands for working
qubits and anc for ancilla qubit. Panel B shows the oracle for marking state |011〉. For a higher number of qubits,
the circuit can be scaled up following the patterns in the initial phase and the diffusion operator. Interested readers
can learn more about the circuit construction using the interactive applet created by Prokopenya (2011).
Source: Adapted from Prokopenya (2011)

18 It holds that X|−〉 = 1√
2
(X|0〉−X|1〉) = 1√

2
(|1〉− |0〉) = − 1√

2
(|0〉− |1〉) = −|−〉. It may seem that the minus

sign before the state can be ignored, as it is a global quantum phase. However, state |−〉 is incorporated into
multi-qubit state |ψinit〉 and the sign is changed only for state |011〉, hence -1 is in fact the relative phase.
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Next, a so-called diffusion operator implementing the “mirroring” is applied. The logic behind
the construction of the diffusion operator is beyond the scope of this article. However, details are
provided by Grover (2001).19 The oracle and the diffusion operator of the circuit are applied R
times. Finally, the working qubits are measured to get the desired record from the database.

Note that multi-controlled X and Z gates appear in the circuit. Techniques for decomposing such
gates into more elementary ones are demonstrated in Barenco et al. (1995). However, in practice
we can use the implementation of the Grover algorithm available in the Qiskit libraries.

Having introduced the general Grover algorithm, we will now outline its adaptation for solving
QUBO problems. Assume we are solving a problem with n variables and we have m qubits for
storing the respective objective function values. Those n+m working qubits are initialized to the
quantum state

|ψinit〉=
1√
2n

2n−1

∑
i=0
|i〉n| f (i)− y〉m, (12)

where |i〉 is the ith basis state of an n-qubit system, f (i) is the objective function value for the bit
string encoded in state |i〉 and y is the lowest value of the objective function found so far. Unless
such y exists, it is initialized to y := f (s), where s is a random n bits long string.

In fact, state (12) is a uniformly distributed superposition consisting of all the possible arguments of
the objective function and the respective function values. Note that qubits | f (i)− y〉m are entangled
with qubits |i〉n to preserve the relation between function arguments i and function values f (i). It is
worth noting that the parameters of the quantum gates in the circuit preparing state |ψinit〉 are based
on the coefficients of the objective function rather than on the actual function values. Otherwise, we
would need to list all the function values ex-ante and the algorithm would be reduced to the brute
force method without any speed-up.

If, for a certain argument k, it holds that f (k)< y, then state |k〉n should be marked, because we have
found a better solution than y. This means that the oracle is quantum gate O defined as

O|i〉n| f (i)− y〉m = sgn[ f (i)− y]|i〉n| f (i)− y〉m ∀i ∈ {0;1 . . .2n−1}. (13)

After state |k〉n has been marked, its probability amplitude is amplified with the diffusion operator
(the same one as shown in Figure 4) and the state stored in the first n working qubits is measured to
get k. The function value f (k) is determined and a new quantum state |ψinit〉 is prepared, but with
y := f (k). The algorithms run until the value of the objective function decreases. As can be seen,
this adaptation of the Grover algorithm follows the hybrid approach, as the quantum computer has
to be reprogrammed in each iteration. Technical details on the construction of the circuit preparing
state |ψinit〉 and the design of the oracle O are presented in Gilliam et al. (2021).

19 The article contains ideas leading to the construction of the Grover algorithm. Interestingly, the algorithm is a
by-product of Schrödinger equation discretization.
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4. Optimization of the FX Reserves Currency Composition

In this part, we will discuss the actual application of quantum computers in portfolio optimization.
In particular, we will show the capabilities of the approaches presented in Section 3 as regards
finding the optimal currency composition of the CNB’s FX reserves. First, we will provide a detailed
description of the optimization problem. After that, we will show how the underlying data for the
optimization are derived, and finally we will discuss the results from the technical and briefly from
the economic perspectives.

4.1 Formulation of the Optimization Problem

The goal of the optimization problem is to find the optimal currency composition of the CNB’s
FX reserves after three major crises of the 21th century: the Great Recession of 2007–2009, the
European debt crisis of 2011 and the Covid crisis of 2020. Since three periods are involved, the
optimization is dynamic. The optimal compositions should generate the maximum possible return
in CZK and at the same time the return volatility and the transaction costs incurred in connection
with reserve currency rebalancing should be minimized. We require the sum of the weights of all the
currencies involved to equal 1 for each time period. The weights have to be non-negative (i.e. short
positions are forbidden) and less than or equal to one. Apart from these requirements, we impose no
further constraint on the currency composition. We include all the currencies we currently have in
the reserves in the optimization regardless of they were part of the reserves in the periods mentioned
above. This means that the following currencies are included: AUD, CAD, CNY, EUR, GBP, JPY,
SEK, USD and gold.

Note that for the purposes of this paper, we abstract from the particular asset classes included in the
reserves and optimize the currency composition only from the perspective of the FX returns in CZK.
We could include individual asset classes (such as government bonds, agency bonds and equities)
for each currency in the model, but at the cost of additional variables. This would make the model
too complex for solving on a quantum computer. Another possible approach would be two-level
optimization, i.e. first find the optimal currency composition and then find the asset composition for
each currency. However, we leave this exercise for further research.

As discussed above, we carry out the optimization for three time periods. To anchor the periods, we
looked for troughs (i.e. local minima) of the MSCI World Developed Markets index. The index
comprises more than 1,000 shares listed at exchanges in developed countries.20 Thanks to its
world-wide coverage, the index is suitable for identifying global crises. The path of the index
from 2000 to 2021 is shown in Figure 5. A detailed analysis revealed that the lowest points for
the Great Recession, the European debt crisis and the Covid crisis were reached on 9 March 2009,
22 September 2011 and 18 March 2020 respectively. Note that we did not include the year 2022 in
our analysis, because the crisis connected with the Russian–Ukrainian conflict is still ongoing.

The above-described version of the optimization problem is the practical one. Because of
the different capabilities of the individual quantum algorithms and computers we used, we
also formulated two simpler versions of the practical problem. The first is a testing version
comprising only the time period connected with the Great Recession and all nine currencies.
The second is a toy version comprising the time period connected with the European debt crisis
and only three currencies (AUD, CAD and gold). To reduce the number of weights in the toy
20 Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy,
Japan, the Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United
Kingdom and the USA.
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version further, we removed the constraint ∑i wi = 1 from the objective function and substituted
wgold = 1−wAUD−wCAD into the function.21

Figure 5: MSCI World Developed Markets Index 2000–2021

Note: The troughs of the Great Recession, the European debt crisis and the Covid crisis are highlighted with red
circles. Note that we do not include the dot-com crisis of 2002 (the blue circle) in our analysis.
Source: Author’s own creation based on Bloomberg data

Since the optimization is carried out on a quantum computer, the objective function is formulated
in QUBO form (5). This means that we binarized the asset weights. We used 14, 10 and 3 binary
variables per weight for the practical, testing and toy versions respectively. The accuracy of the
weights is therefore 0.006%, 0.1% and 12.5% respectively. The total number of binary variables
involved is 378, 90 and 6 respectively. The numbers of binary variables used for binarizing the
weights come from the maximum number of variables the given algorithm can work with (the toy
and testing versions) and from the requirement to ensure sufficient accuracy (the practical version).
We set risk aversion λ = 10, the sensitivity to transaction costs µ = 20 and the importance of the
constraint that the sum of the weights is equal to one F = 100 (for D-Wave constrained hybrid
heuristic F = 0). These numbers are chosen arbitrarily.

4.2 Data and Methodology

The underlying raw data we used are the FX rates between CZK and all the other currencies
involved. The rates were expressed in the notation ccyCZK, i.e. the number of CZK units that
one unit of the currency ccy is worth. The data come from the CNB’s FX rates list and Bloomberg.
Based on the bid and ask rates we calculated the mid rate.

The daily CZK return on the ith currency is given by the expression 100(FX(i)
t /FX(i)

t−1− 1), where

FX(i)
t is the mid rate for day t. The daily returns were averaged over a time period starting on the

day the trough of the crisis was reached and spanning five years to get an estimation of the expected

21 The objective function for the three assets is provided by Markowitz (1952), page 83.
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returns. Note that for the Covid crisis the series ends on 31 December and is therefore only 1.75
years long. The averaged returns were annualized. Based on the daily returns, we calculated the
variances in the returns and the covariances among the returns of all currencies. The variances and
covariances were also annualized. Transaction costs are based on bid/ask spreads. On each day, for
the ith currency we calculated the relative spread 100(FX(i)

ASK−FX(i)
BID)/FX(i)

MID. The relative spreads
were averaged over the same time spans as the returns. The expected returns, average transaction
costs and covariance matrices for all three time periods are provided in Appendix C.

Based on the expected returns, the average transaction costs and the covariance matrices, we carried
out the optimization using a continuous gradient solver implemented in MS Excel. The results for
the practical, testing and toy versions of the optimization are provided in Table 1. The run time of
the gradient method was 2,109, 375 and 94 milliseconds for the practical, testing and toy model
respectively.22 The optimal value of the objective function was 0.0921, 0.0177 and 0.088 for the
practical, testing and toy model respectively. We find that in all instances, the eigenvalues of the
matrix defining the objective function are positive, i.e. the matrix is positive definite. This means
that we are dealing with the “easy version” of the quadratic optimization problem, which makes it
harder for quantum computers to outperform classical ones. Based on these results, we will assess
the capabilities of quantum algorithms in practical applications.

Table 1: Results of Optimization with MS Excel Gradient Solver

Version Time period USD EUR AUD CAD GBP SEK JPY CNY Gold

Practical
Great Recession 0.0% 31.7% 19.8% 1.2% 5.9% 35.6% 0.0% 0.0% 5.7%
Debt Crisis 6.2% 42.6% 15.2% 0.0% 6.4% 23.5% 0.0% 4.8% 1.4%
Covid 0.0% 20.1% 32.7% 0.6% 12.7% 21.2% 0.0% 3.7% 8.9%

Testing Great Recession 0.0% 26.2% 17.1% 0.0% 0.0% 52.9% 0.0% 0.0% 3.8%

Toy Debt Crisis 31.1% 54.7% 14.2%
Toy – bin Debt Crisis 37.5% 50.0% 12.5%

Note: In the toy version, only AUD, CAD and gold are included. Since only three binary variables are used for
the representation of each weight, the optimal solution that can be found in this setting is different from the one
obtained using the gradient method. This solution is depicted in row Toy – bin.
Source: Author’s own calculations

It is important to note that these benchmark values concern portfolio optimization with real asset
weights, whereas the other algorithms tested are intended for the QUBO version of the problem. As
the purpose of this article is to assess the practical capabilities of quantum algorithms, we compared
them with the option most available to bank analysts, the MS Excel solver, despite the different
nature (i.e. continuous vs binary) of the algorithms.

4.3 Results

In this part, we will discuss the results we obtained. First, we will present the results for all three
versions of the problem from the perspective of the ability of the algorithms employed to find the
optimal solution and the run time. Second, we will briefly discuss the economic interpretation of
the optimal results.
22 Note that the tests of all the classical algorithms were carried out on a PC equipped with 8 GB RAM and a
four-core processor with clock speed 3.3 GHz.
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Note that in the case of the toy version, we ran the optimization only once, as we immediately
obtained the optimal result. In the case of the testing and practical versions, we repeated the
optimization 100 times for the D-Wave hybrid constrained heuristic and quantum annealer (in
particular, we used the D-Wave Advantage System 4.1 quantum processor) and 10 times for the
classical heuristics, as the run times were much longer in the latter case. After that, we picked the
solution nearest to the optimal one in terms of the objective function value. For the branch and
bound algorithm, we ran the calculation only once, as the algorithm is exact. Note that for the
testing and practical versions, we show the currencies’ weights in condensed graphical form; the
numerical results are presented in Appendix D.

Toy Version

The toy version was devised to demonstrate portfolio optimization on IBM QuantumTM, due to the
limited number of qubits on the available quantum processors. In particular, we used the Nairobi
and Oslo processors, both of which have seven qubits. Such a low number of qubits allowed us to
run the portfolio optimization with at most three currencies and to use only three binary variables
to represent each currency weight. This would imply nine binary variables, but one weight was
expressed with the other two, hence we actually needed six qubits to run the VQE and the QAOA.

Both the VQE and the QAOA were run on the Nairobi and Oslo real quantum processors with
success. As both algorithms are iterative, we compared the number of iterations necessary for real
processors and the noiseless simulator. The comparison is depicted in Table 2.

Table 2: Results of Optimization with QAOA and VQE for Toy Version

Processor VQE QAOA
Simulator 26 119
Nairobi 61 118
Oslo 61 154

Note: The table presents the number of iterations needed to find the optimal solution of the toy version. The
number of repetitions (shots in IBM terminology) in each iteration was set automatically to 4,000.
Source: Author’s own calculations

As can be seen from the table, the number of iterations is higher in the case of real processors.
The only exception is the QAOA run on the Nairobi processor, where the number of iterations
is lower. We found that the VQE necessitated less iterations than the QAOA. We attribute this
better performance to the fact that the VQE is a more general algorithm than the QAOA (the VQE
assumes no specific structure of the Hamiltonian describing the optimization problem) and thus the
quantum circuit is less complicated. The run time of one iteration of both the VQE and the QAOA
is in the order of seconds. Moreover, the batch-processing approach used in the IBM QuantumTM

environment increases the total run time to hours. Together with the low number of qubits, this fact
disqualifies optimization algorithms designed for gate-based quantum computers from real-world
application for the time being.

The situation was even more complicated in the case of Grover adaptive search. On top of the six
qubits used for the binary variables, we also needed one ancilla qubit and qubits for storing the
objective function values. After experimenting on a simulator, we found that another six qubits are
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necessary for this purpose. In total, we would need 13 qubits to run Grover adaptive search. Hence,
we tested the algorithm on the simulator only. Note that we achieved the desired results.

We also solved the toy version with D-Wave heuristics and classical methods. The run times are
compared in Table 3. The table also contains the classification of the algorithm (continuous/QUBO,
exact/heuristic and classical/quantum/hybrid) to show the differences between the approaches. The
best algorithm is classical simulated annealing, followed by the D-Wave annealer. Interestingly, the
slowest approach is the D-Wave hybrid constrained heuristic. However, we should not draw strong
conclusions from the results based on the toy version with only six binary variables. In such cases,
the majority of the time is consumed by setting up the problem, with the actual solution taking up
only a fraction of the run time. In examples with more variables, the relation is rather the opposite.

Table 3: D-Wave and Classical Method Run Times for Toy Version

Method Type Run time (ms)
Simulated annealing Classical heuristic QUBO 8.98
D-Wave annealera Quantum heuristic QUBO 26.01
Brute force method Classical exact QUBO 69.93
Genetic optimization Classical heuristic QUBO 80.56
Gradient methodb Classical exact continuous 94.00
Branch and bound Classical exact QUBO 375.00
D-Wave hybrid Hybrid heuristic QUBO 2,993.00c

Note:
a The number of calculation repetitions (the number of reads in D-Wave terminology) was 1,000.
b The gradient method serves as the benchmark.
c The run time on the quantum annealer was 63.17 ms; the rest of the time was consumed by classical heuristics.
Source: Author’s own calculations

Testing Version

The testing version comprises 90 binary variables and thus cannot be optimized on IBM QuantumTM.
The results obtained with the D-Wave and classical algorithms are compared in Figure 6.

As can be seen in Figure 6, no algorithm was able to find the global optimum. The nearest
sub-optimal solution was provided by the D-Wave hybrid heuristic (objective function value
0.01791), followed by the branch and bound algorithm (0.01810), simulated annealing (0.01905),
the D-Wave annealer (0.02516) and genetic optimization (0.05578).

The D-Wave hybrid approach and simulated annealing outperformed the purely quantum D-Wave
annealer. We attribute this result mainly to the limited connectivity of the D-Wave quantum
processor. The problem has to be adapted to the processor topology, which leads to an increase
in the number of ancilla qubits serving as intermediaries in the links between the working qubits.
The intermediaries add additional noise and therefore increase the probability of quantum state
decoherence. In contrast, the hybrid approach uses the quantum processor for solving less complex
sub-problems, which eliminates the need for a large number of ancillas and hence reduces the
probability of decoherence. This means that the hybrid approach leverages the capabilities of the
quantum annealer as much as possible and at the same time the combination with the classical
approach reduces the imperfections of the current quantum hardware.
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Figure 6: Best Solutions for Testing Version

Note: GR stands for classical gradient algorithm, BB for branch and bound algorithm, SA for simulated annealing,
GA for genetic-based algorithm, DW QPU for D-Wave quantum annealer and DW hybrid for D-Wave constrained
hybrid heuristic. In the case of the D-Wave annealer, the number of repetitions (reads in D-Wave terminology) was
set to 5,000.
Source: Author’s own calculations

Despite the fact that the branch and bound algorithm is an exact solver, it was not able to find
the optimum. However, the reason is purely technical. The CPLEXTM environment ended with a
message that the optimization could not continue and we found that the RAM was full. Increasing
the RAM size would allow us to find the global optimum of the problem.

Note that classical genetic optimization was far from the optimal solution. This is probably caused
by the fact that, in contrast to simulated annealing, solutions with a higher value of the objective
function are always rejected. As a result, the algorithm can get stuck in a local minimum.

The run times of the algorithm were the following: 1,069 ms for the D-Wave annealer, 5,011 ms for
the D-Wave hybrid heuristic (of that, 15.232 ms was spent on the quantum annealer), 485 seconds
for simulated annealing, 1,382 seconds for genetic optimization and 5,880 seconds for the branch
and bound algorithm. This clearly demonstrates the superiority of the D-Wave hybrid approach in
the realm of heuristics. In the case of the branch and bound algorithm, despite the very long run
time, we would be able to find the global optimum if we had enough memory.

Practical Version

As the practical version contains 378 binary variables, the D-Wave software was not able to embed
the problem in the quantum processor in reasonable time. We also realized that the genetic algorithm
is not able to find any feasible solution (i.e. having a sum of weights equal to 1). Therefore, we only
employed simulated annealing, the branch and bound algorithm and the D-Wave hybrid constrained
heuristic for the practical version. The solutions obtained are shown in Figure 7.
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Figure 7: Best Solutions for Practical Version

Note: GR stands for classical gradient algorithm, BB for branch and bound algorithm, SA for simulated annealing
and DW for D-Wave constrained hybrid heuristic.
Source: Author’s own calculations

Similarly to the testing version, no algorithm was able to find the optimal solution. The branch and
bound algorithm, the D-Wave hybrid heuristic and simulated annealing found sub-optimal solutions
with objective function values of 0.09325, 0.09395 and 0.10710 respectively in 39,429, 5.048 and
6,333 seconds respectively. These results make the D-Wave hybrid heuristic the winner in terms of
run time (only 5 seconds). Concerning the closeness to the optimal solution, the branch and bound
algorithm achieved the best result, despite its very long run time (almost 11 hours).

The reason why none of the QUBO heuristics tested was able to find the global optimum lies in
their nature – they search in a small subset of all the possible solutions. On the one hand, this allows
us to find at least some solution, but on the other hand, we cannot be sure if the solution is optimal.
Moreover, binarization of the real weights leads to an objective function with considerably different
coefficients, as terms containing 2−k have significantly different values for different k. In the case
of quantum methods, terms with low coefficients can be obscured by noise. In the case of classical
heuristics, the algorithm can get stuck in a local minimum despite the measures taken, as in the case
of simulated annealing.

Concerning the exact solvers, the branch and bound algorithm again faced the issue of a lack of
memory. If we had large enough RAM, we would be able to find the exact solution, but at the cost
of a long run time.

Economic Interpretation of the Optimal Results

The actual currency composition of the CNB FX reserves differs significantly from the optimal
one that we found for all three time periods. The reserves are composed of all nine mentioned
currencies, but the presented optimal solutions contain only some of them.
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With the exception of the “Debt crisis” time period, the weight of USD is zero. This is caused
by its relatively high volatility and low returns in comparison with correlated currencies such as
AUD and CAD. However, the American dollar is the primary reserve currency and the prominent
currency in international trade. Moreover, the markets for AUD and CAD government bonds are
much smaller and less liquid than the US one. Therefore, USD has its place in the FX reserves
despite the mentioned disadvantages.

Because of the lower volatility and higher returns of CNY and the high correlation between CNY
and JPY, the optimization algorithms prefer the Chinese yuan to the Japanese yen (the weight of
the yen is zero). However, until recently, investments in CNY were constrained by the Chinese
authorities. For this reason, JPY has been more attractive as a reserve currency.

The Swedish krona and the euro are the currencies with the lowest correlation with the others, so the
optimization algorithms increase their weight significantly in order to diversify the reserves. A high
share of EUR makes sense, as the Czech Republic is part of the EU and the EUR market is deep
and highly liquid. In contrast, the Swedish market is the smallest of those included in our analysis.
The share of SEK should be therefore reduced and the share of EUR even increased.

These three examples clearly illustrate the need to provide optimization algorithms with additional
information, for example maximum (or conversely minimum) shares for currencies that suffer from
some deficiencies (or conversely are too important to be omitted). Such information has to be based
on expert judgment.23 However, we leave more practical optimization for further research once
quantum computers are mature enough to easily incorporate constraints into optimization problem.

Another issue is connected with the estimation of the covariance matrices, expected returns and
average transaction costs. To get a meaningful estimation, relatively long time series are needed.
For example, we tried to estimate the covariance matrix for the Great Recession period with a
one-year-long series. However, the optimization ended with 100% allocation to the Australian
dollar. Clearly, such portfolio is poorly diversified, and we had to prolong the time series to five
years. This led to another problem, as the five-year time series covers not only the recovery after
the Great Recession, but also part of the European debt crisis. On top of that, we have to bear in
mind that our analysis is retrospective. In practice, we would need to carry out a forward-looking
estimation of the covariances and returns, because we would be interested in the future currency
composition of the reserves. In the end, we put these deficiencies of our model aside, because the
main purpose of this article is to examine the capabilities of quantum optimization algorithms. We
leave a discussion of the estimations of inputs to portfolio optimization to further research.

5. Conclusion

The main aim of this paper was to assess the capabilities of quantum algorithms for portfolio
optimization and compare them with their classical counterparts. In particular, we tested algorithms
for universal gate-based quantum computers (the VQE, the QAOA and Grover adaptive search)
on IBM QuantumTM, the quantum annealers and hybrid heuristics provided by D-Wave, the
classical branch and bound algorithm (implemented in IBM CPLEXTM) and two classical heuristics

23 As Markowitz (1952) puts it: To use the E-V [expected return-variance] rule in the selection of securities we
must have procedures for finding reasonable µ and σ . These procedures, I believe, should combine statistical
techniques and the judgment of practical men. My feeling is that the statistical computations should be used to
arrive at a tentative set of µ and σ . Judgment should then be used in increasing or decreasing some of these µ

and σ on the basis of factors or nuances not taken into account by the formal computations.
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(simulated annealing and a genetic-based algorithm). We tested the algorithms from the perspective
of run time and ability to find the optimal solution. To carry out the analysis, we constructed a
binary version of Markowitz dynamic portfolio optimization in order to find the optimal currency
composition of the CNB’s FX reserves. The continuous gradient method implemented in MS Excel
served as a benchmark for the purposes of comparison, as the original version of Markowitz
optimization is continuous.

We found that none of the QUBO algorithms tested was able to find the optimal solution discovered
by the classical continuous gradient method implemented in MS Excel, although the D-Wave hybrid
constrained heuristic was very close in the case of the testing version of the problem, as was the
branch and bound algorithm in the case of the practical version. However, this all means that the
QUBO approach seems not to be a suitable option for portfolio optimization. Even with a usual
office PC, we are able to find the global optimum of the problem in seconds using the classical
continuous gradient method implemented in MS Excel. For the purposes of central banks, this is
plainly sufficient. The QUBO version of portfolio optimization is useful only when the problem is
purely binary, i.e. when we only want to decide whether or not to incorporate certain assets into the
portfolio and we do not need to know the weights of those assets.

However, this conclusion does not mean that quantum QUBO algorithms are useless. As mentioned
earlier, they can be used to solve problems which are binary by definition (such as the travelling
salesperson problem or the assignment problem), but we leave this to further research. Moreover,
the inability of the algorithms to find the solution to the problem could mean that the problem is
hard to solve (we can see this from the excessive run time of the exact branch and bound algorithm).
Therefore, it can be used as an interesting testing problem for new algorithms or for measuring
progress in the development of quantum computers.

Concerning the capabilities of quantum annealers, we found that the current noisy quantum
computers are not able to solve problems of practical size themselves, but they can be used
to enhance classical algorithms. The D-Wave hybrid heuristic seems to be just one step from
real-world application. Although this algorithm was not always the fastest, it was able to find the
solution closest to the optimal one in reasonable time, especially when compared with classical
algorithms, both heuristic and exact.

Regarding the QAOA, the VQE and Grover adaptive search, we will have to wait until the number of
qubits offered by universal gate-based quantum computers is high enough before we can assess their
ability to solve problems of practical size. Grover adaptive search has an even longer road ahead,
as the consumption of qubits is higher than in case of the QAOA and the VQE. Moreover, as the
Grover algorithm has guaranteed speed-up, we suspect that qubit quality will also be an important
factor in its performance.

For the time being, this article should serve as a complement to the introductory literature on
quantum computing for economists in general and central bankers and regulators in particular.
We expect that it will take several years for quantum computers to become a fully mature
technology. Moreover, it is possible that Lloyd’s conjecture on exponential speed-up for quantum
system simulation will be proved. This would mean that quantum computers will be helpful
in solving QUBO problems. In the meantime, we will “keep an eye” on the development of
quantum computers and certainly return to this research once they are on the verge of industry-scale
deployment.
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Disclaimer
This article is intended to be a purely academic research and educational material. The article is neither an offer
to buy or sell any security nor a solicitation to do so. The article is not investment advice. Neither the author
nor the CNB is responsible for any losses (including but not limited to financial and reputational ones) incurred
in connection with the implementation of the methods described in the article. The author declares that no result
presented in the article has been implemented as a part of the CNB’s investment strategy or used as an input
to its strategic asset allocation decision-making. The use of the software products discussed in the article is
non-profit-oriented (research and educational purposes).



28 Martin Veselý

References

AARONSON, S. (2015): “Quantum Machine Learning Algorithms: Read the Fine Print.” Nature
Phys, 11(4):291–293.

AHARONOV, D., W. VAN DAM, J. KEMPE, Z. LANDAU, S. LLOYD, AND O. REGEV (2007):
“Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation.” SIAM
Journal of Computing, 37(1):166–194.

AHARONOV, D., X. GAO, Z. LANDAU, Y. LIU, AND U. VAZIRANI (2022): “A Polynomial-time
Classical Algorithm for Noisy Random Circuit Sampling.” arXiv:2211.03999v1
[quant-ph].

ANSCHUETZ, E. R., J. OLSON, A. ASPURU-GUZIK, AND Y. CAO (2019): Variational Quantum
Factoring. In Quantum Technology and Optimization Problems, pages 74–85. Springer
International Publishing.

AYUB, C., M. CEBERIO, AND V. KREINOVICH (2020): How Quantum Computing Can Help with
(Continuous) Optimization. In Ceberio, M. and V. Kreinovich, editors, Decision Making
under Constraints, pages 7–14. Springer International Publishing.

BARENCO, A., C. H. BENNETT, R. CLEVE, D. P. DIVINCENZO, N. MARGOLUS, P. SHOR,
T. SLEATOR, J. A. SMOLIN, AND H. WEINFURTER (1995): “Elementary Gates for
Quantum Computation.” Physical Review A, 52(5):3457.

BARKOUTSOS, P. K., G. NANNICINI, A. ROBERT, I. TAVERNELLI, AND S. WOERNER (2020):
“Improving Variational Quantum Optimization using CVaR.” Quantum, 4:256.

BERTSIMAS, D. AND J. TSITSIKLIS (1993): “Simulated Annealing.” Statistical Science, 8(1):
10–15.

CHEN, S., J. COTLER, H.-Y. HUANG, AND J. LI (2022): “The Complexity of NISQ.”
arXiv:2210.07234v1 [quant-ph].

CHILDS, A. M. (2009): “Equation Solving by Simulation.” Nature Physics, 5(12):861.

CORANA, A., M. MARCHESI, C. MARTINI, AND S. RIDELLA (1987): “Minimizing Multimodal
Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM
Transactions on Mathematical Software, 13(3):262–280.

D-WAVE (2022): “Hybrid Solvers for Quadratic Optimization.” (https://www.dwavesys.com/
media/soxph512/hybrid-solvers-for-quadratic-optimization.pdf)

D-WAVE (2018): “Getting Started with the D-Wave System.” (https://docs.dwavesys.com/docs/
latest/doc_getting_started.html)

D-WAVE (2022): “D-Wave Ocean Software Documentation.” (https://docs.ocean.dwavesys.com/
en/stable/)

DE WOLF, R. (2022): “Quantum Computing: Lecture Notes.” arXiv:1907.09415v3 [quant-ph].

DING, Y., J. GONZALEZ-CONDE, L. LAMATA, J. D. MARTÍN-GUERRERO, E. LIZASO,
S. MUGEL, X. CHEN, R. ORÚS, E. SOLANO, AND M. SANZ (2023): “Towards Prediction
of Financial Crashes with a D-Wave Quantum Computer.” Entropy, 25(2):323.

DURR, C. AND P. HOYER (1996): “A Quantum Algorithm for Finding the Minimum.”
arXiv:quant-ph/9607014.



Finding the Optimal Currency
Composition of Foreign Exchange Reserves with a Quantum Computer 29
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Appendix A: Matrix Formulation of the Portfolio Optimization Problem

In this appendix, we present the matrix form of the objective function (5). We will use symbol 1
for a matrix or vector (depending on the context) in which all the elements are equal to 1. Symbol
O is used for a zero matrix. We assume risk aversion λ and sensitivity to transaction cost µ to be
time-independent. Note that in contrast to part 2 we use Dirac notation for linear algebra objects to
make the expressions easily readable.

First, we rewrite the objective function in terms of weights wi ∈ R and after that we binarize the
function with binary variables xi ∈ {0;1} to get the QUBO form of the problem.

Condition ∑i w(t)
i = 1 ∀t ∈ {1,2, . . .T} is expressed as F

(
∑i w(t)

i −1
)2

=F
[(

∑i w(t)
i
)2−2∑i w(t)

i +1
]
.

In matrix form F(〈w(t)|1|w(t)〉−2〈w(t)|1〉+1).

Transaction costs at time t are given by the expression ∑i ν
(t)
i (w(t)

i −w(t−1)
i )2. Considering Vt to be

a diagonal matrix containing unit transaction cost (the ith diagonal element is ν
(t)
i ), the matrix form

of the transaction cost term is 〈w(t)−w(t−1)|Vt|w(t)−w(t−1)〉= 〈w(t)|Vt|w(t)〉+〈w(t−1)|Vt|w(t−1)〉−
〈w(t−1)|Vt|w(t)〉−〈w(t)|Vt|w(t−1)〉. Note that VT+1 = O, because we assume no further changes in
the portfolio after time T .

Together with covariance matrix Ct, the quadratic part of the objective function referring to
time period t becomes At = λCt + µ(Vt + Vt+1) + F1. Besides this, we have mixed terms
µ〈w(t−1)|Vt|w(t)〉 and µ〈w(t)|Vt|w(t−1)〉 connecting consecutive time periods. Putting all that
together, we arrive at the final matrix describing the quadratic part of function (5)

A =



A1 −µV2 O O O . . . O
−µV2 A2 −µV3 O O . . . O

O −µV3 A3 −µV4 O . . . O
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

O O . . . O −µVT−1 AT−1 −µVT
O O . . . O O −µVT AT


(A1)

The linear part of function (5) consists of asset returns and the linear term of
(

∑i w(t)
i −1

)2, therefore
〈bt |=−〈rt |−2F〈1|, hence the whole vector 〈b| is

(
〈b1| 〈b2| . . . 〈bT |

)
. The constant part ct = F

is generated by the absolute term of F
(

∑i w(t)
i − 1

)2. Since we assume T time periods, in total
c = FT . All these steps allow us to express function (5) in the form 〈w|A|w〉+ 〈b|w〉+ c.

The next step involves replacing weights wi with binary variables xi. It holds that w(t)
i =∑

`
k=1 2−kx(k,t)i .

Introducing vector 〈s|=
(
2−1 2−2 . . . 2−`

)
, we can write x(t)i = 〈s|x(t)i 〉, where |x(t)i 〉 is a vector

of binary variables describing weight w(t)
i . Quadratic terms such as w(t)

i w(t)
j can clearly be rewritten

as 〈x(t)i |s〉〈s|x
(t)
i 〉. Expression |s〉〈s| := Q is a matrix of type `× `. With these new symbols, we get

the final shape of the “binarized” objective function. In matrix A, we replace each element ai j with
matrix ai jQ and we substitute bi〈s| for each element in vector 〈b|. Constant c is unaffected by the
binarization.
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Appendix B: Simulated Annealing for Binary Optimization

In this appendix, we provide details on the simulated annealing implementation we used in the
practical part of this paper (the MatLab source code is provided in (Veselý, 2022a)). As noted in
the general description of the algorithm in Section 3.1, the particular implementation of simulated
annealing is characterized by a specific noise operator and a cooling schedule. Our noise operator
consists of two steps:

1. Generate integers i and j from a uniform distribution, and swap the values of xi and x j.

2. Generate random numbers pi, p j ∼ U(0,1). If pi > 0.5, then xi := xi, otherwise xi remains
unchanged. Do the same for j.

The cooling schedule is defined as follows. First, the temperature is set to T = 1. For concrete
temperature T , the noise operator is applied several times (the maximum number of iterations is
defined by the user). The temperature is decreased by a user-defined decrement once the maximum
number of iterations is reached. The process repeats until T > 0.

Sometimes, a solution with a worse value of the objective function is allowed to avoid getting stuck
in a local minimum.24 A decision whether to preserve the worse solution is made based on the
Metropolis criterion (Corana et al., 1987). First, the following value is calculated

q = exp
( fprev− fcurr

kBT

)
, (B1)

where fprev and fcurr are the previous and current values of the objective function respectively, T is
the temperature and kB > 0 is the “Boltzmann constant”. Second, a random number p ∼U(0,1) is
generated and if q> p, the worse solution is preserved. Note that in the default setting kB = 1, but the
user can alter the constant.25 Increasing the value of kB leads to a higher probability of preserving
the worse solution. Note that allowing the worse solution to be preserved requires storing the best
solution found so far.

The implementation described above was tested on two types of binary optimization problem:

1. Linear objective functions 〈b|x〉 → min with bi ∼U(−1,1). Clearly, the minimum occurs at
the point satisfying xi = 1 ∀bi ≤ 0 and xi = 0 otherwise. We tested linear functions with up to
50,000 variables.

2. Quadratic objective functions 〈x|A|x〉→min, where matrices A were taken from the library of
testing functions for QUBO provided by Wiegele (2007). We tested functions with up to 500
variables. In particular, we used the following problems from the library: be100.1, be200.8.1,
be250.1, gka1f and gka5f.

24 Note that we use the term local minimum loosely. Since the QUBO problem is a discrete problem, any solution
is a local minimum. However, in cases where the objective function value is low for a particular solution in
comparison with other ones, the algorithm can become trapped in that solution. This is the actual meaning we
assign to get stuck in a local minimum.
25 The actual value of the Boltzmann constant arising in thermodynamics is kB = 1.380649×10−23JK−1. However,
due to the magnitude of the objective function values involved in portfolio optimization, the natural Boltzmann
constant is too small.
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In Table B1, we provide execution times for all the tested instances to document the capabilities
of our implementation. For all the problems tested, our simulated annealing algorithm found the
solution. It is worth emphasizing that the algorithm parameters (i.e. the number of iterations,
the temperature-decreasing speed and the “Boltzmann constant”) had to be fine-tuned in order to
achieve the optimum for a particular objective function. There is no scientific approach to setting
the parameters; it is rather a matter of experience and intuition. However, two rules of thumb can
be used:

1. With an increasing number of variables, the maximum number of iterations and the “Boltzmann
constant” should be increased, while the temperature should decrease more slowly. This gives
the algorithm enough time to scan a higher number of bit strings in the objective function
domain.

2. With an increasing value of the objective function, the “Boltzmann constant” should be
increased to properly scale the term fprev− fcurr in the Metropolis criterion.

Table B1: Results of Simulated Annealing Implementation Tests

Number of
variables

Optimum
found

Execution time Additional
detailsSA Brute force (est.)

Random linear objective function

50 yes 0.08 s 13 d
100 yes 0.25 s ≈ 1013 y

1000 yes 1.90 s ≈ 10284 y

10000 no 36 s ≈ 102993 y
opt: −2516.8697, found: −2516.8497

yes 15 m 38 s

50000 no 1 m 23 s ≈ 1015034 y
opt: −19856.4264, found: −19854.8727

yes 3 h 7 m

Quadratic objective function

100 yes 0.18 s ≈ 1013 y
200 yes 2.00 s ≈ 1043 y
250 yes 4.20 s ≈ 1058 y

500 yes 13 s ≈ 10134 y
sparse matrix (10% non-zero elements)

yes 24 s full matrix

Note: The tests were carried out on a PC equipped with 8 GB RAM and a four-core processor working at 3.3 GHz.
As no optimization for parallel computing was implemented, effectively only one core was used. The estimation
of the brute force method execution time was based on the assumption that the calculation of the objective function
value for a particular bit string and the comparison of the value obtained with the best one found so far takes one
nanosecond (10−9 s). The assumption is based on the gigahertz (109 Hz) speed of the CPU clock. As more than
one instruction (or processor clock tick) is needed for the described evaluation, our estimations are probably overly
optimistic. However, they well document the need for more sophisticated methods for finding the optimum of
exponentially scaling problems. Note that the age of the Universe is around 13.77×109 years.
Source: Author’s own calculations
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Appendix C: Expected Returns, Transaction Costs and Covariance Matrices

Great Recession

USD EUR AUD CAD GBP SEK JPY CNY Gold

Returns -0.80% 0.05% 5.00% 1.87% 2.02% 5.90% -1.10% 1.73% 6.28%

Costs 0.26% 0.27% 0.23% 0.22% 0.21% 0.27% 0.20% 0.23% 0.25%

CovVar
USD 1.90% 0.67% 0.77% 1.11% 1.20% 0.44% 1.81% 1.89% 1.24%
EUR 0.67% 0.48% 0.36% 0.45% 0.54% 0.35% 0.74% 0.67% 0.53%
AUD 0.77% 0.36% 1.34% 0.94% 0.73% 0.53% 0.69% 0.76% 0.90%
CAD 1.11% 0.45% 0.94% 1.28% 0.84% 0.51% 0.96% 1.10% 0.95%
GBP 1.20% 0.54% 0.73% 0.84% 1.29% 0.46% 1.22% 1.20% 1.01%
SEK 0.44% 0.35% 0.53% 0.51% 0.46% 0.91% 0.41% 0.44% 0.50%
JPY 1.81% 0.74% 0.69% 0.96% 1.22% 0.41% 2.78% 1.80% 1.51%
CNY 1.89% 0.67% 0.76% 1.10% 1.20% 0.44% 1.80% 1.91% 1.25%
Gold 1.24% 0.53% 0.90% 0.95% 1.01% 0.50% 1.51% 1.25% 3.87%

European Debt Crisis

USD EUR AUD CAD GBP SEK JPY CNY Gold

Returns 6.12% 1.75% 0.84% 0.89% 2.51% 1.38% 0.74% 5.36% 1.40%

Costs 0.22% 0.18% 0.31% 0.20% 0.27% 0.19% 0.13% 0.18% 0.17%

CovVar
USD 1.25% 0.35% 0.69% 0.87% 0.75% 0.42% 1.02% 1.23% 0.67%
EUR 0.35% 0.26% 0.24% 0.28% 0.29% 0.24% 0.35% 0.35% 0.26%
AUD 0.69% 0.24% 1.28% 0.87% 0.63% 0.42% 0.62% 0.71% 0.70%
CAD 0.87% 0.28% 0.87% 1.12% 0.68% 0.41% 0.69% 0.87% 0.65%
GBP 0.75% 0.29% 0.63% 0.68% 1.01% 0.39% 0.59% 0.76% 0.42%
SEK 0.42% 0.24% 0.42% 0.41% 0.39% 0.69% 0.37% 0.42% 0.35%
JPY 1.02% 0.35% 0.62% 0.69% 0.59% 0.37% 1.73% 1.01% 0.95%
CNY 1.23% 0.35% 0.71% 0.87% 0.76% 0.42% 1.01% 1.29% 0.67%
Gold 0.67% 0.26% 0.70% 0.65% 0.42% 0.35% 0.95% 0.67% 3.00%

Covid Crisis

USD EUR AUD CAD GBP SEK JPY CNY Gold

Returns -5.72% -4.50% 4.34% -0.25% 0.00% -1.22% -9.35% -0.64% 4.02%

Costs 0.33% 0.21% 0.41% 0.34% 0.25% 0.44% 0.30% 0.29% 0.34%

CovVar
USD 0.96% 0.44% 0.30% 0.54% 0.40% 0.24% 0.72% 0.81% 0.39%
EUR 0.44% 0.35% 0.18% 0.26% 0.23% 0.22% 0.40% 0.39% 0.30%
AUD 0.30% 0.18% 0.74% 0.47% 0.40% 0.35% 0.22% 0.31% 0.41%
CAD 0.54% 0.26% 0.47% 0.70% 0.39% 0.29% 0.33% 0.49% 0.28%
GBP 0.40% 0.23% 0.40% 0.39% 0.60% 0.25% 0.36% 0.37% 0.30%
SEK 0.24% 0.22% 0.35% 0.29% 0.25% 0.52% 0.21% 0.25% 0.30%
JPY 0.72% 0.40% 0.22% 0.33% 0.36% 0.21% 0.86% 0.63% 0.54%
CNY 0.81% 0.39% 0.31% 0.49% 0.37% 0.25% 0.63% 0.82% 0.47%
Gold 0.39% 0.30% 0.41% 0.28% 0.30% 0.30% 0.54% 0.47% 2.45%

Note: Returns stands for expected returns, costs for average transaction costs and CovVar for covariance matrix.
Source: Author’s own calculation based on the CNB’s FX rates list and Bloomberg data
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Appendix D: Numerical Results
Testing Version

Algorithm USD EUR AUD CAD GBP SEK JPY CNY Gold

Grad. 0.0% 26.2% 17.1% 0.0% 0.0% 52.9% 0.0% 0.0% 3.8%
BB 0.0% 28.0% 18.2% 0.0% 0.0% 49.9% 0.0% 0.0% 3.9%
SA 0.0% 22.2% 17.1% 1.4% 3.9% 49.1% 0.2% 0.0% 6.2%
GA 14.6% 9.6% 9.7% 0.5% 11.0% 27.1% 1.7% 5.8% 20.3%
D-Wave QPU 0.2% 12.7% 20.4% 8.6% 4.4% 42.2% 2.1% 0.3% 9.2%
D-Wave hyb. 0.1% 28.0% 15.5% 0.2% 0.0% 53.0% 0.0% 0.2% 2.9%

Practical Version

Period Algorithm USD EUR AUD CAD GBP SEK JPY CNY Gold

Great Rec.

Grad. 0.0% 31.7% 19.8% 1.2% 5.9% 35.6% 0.0% 0.0% 5.7%
BB 0.0% 25.0% 19.7% 2.6% 9.0% 37.5% 0.0% 0.0% 6.2%
SA 0.5% 18.4% 12.4% 2.1% 7.2% 50.5% 0.8% 0.6% 7.5%
D-Wave hyb. 0.1% 36.2% 18.5% 0.3% 2.7% 37.1% 0.1% 0.2% 4.8%

Debt crisis

Grad. 6.2% 42.6% 15.2% 0.0% 6.4% 23.5% 0.0% 4.8% 1.4%
BB 6.2% 37.5% 12.5% 0.0% 9.4% 25.0% 0.0% 6.3% 3.1%
SA 6.6% 21.4% 19.6% 0.4% 7.9% 25.0% 0.5% 14.2% 4.4%
D-Wave hyb. 10.1% 50.0% 12.1% 0.1% 6.5% 15.9% 0.0% 4.1% 1.1%

Covid

Grad. 0.0% 20.1% 32.7% 0.6% 12.7% 21.2% 0.0% 3.7% 8.9%
BB 0.0% 16.9% 25.0% 3.1% 16.4% 23.9% 0.0% 4.7% 10.0%
SA 0.2% 3.9% 50.6% 4.6% 5.7% 12.4% 0.6% 12.2% 9.9%
D-Wave hyb. 0.0% 26.7% 31.2% 0.2% 11.3% 17.3% 0.0% 4.2% 9.1%

Note: Grad. stands for classical gradient algorithm, BB for branch and bound algorithm, SA for simulated
annealing, GA for genetic-based algorithm, D-Wave QPU for D-Wave quantum annealer and D-Wave hyb. for
D-Wave constrained hybrid heuristic. The gradient solver is highlighted in red, as it is the benchmark.
Source: Author’s own calculation
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