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Abstract  

 

We study a stochastic dynamic model with risky real investment and a positive long-term 
growth rate. With growing wealth, the economy gets clogged with increasing complexity 
costs (the classical “Leviathanian” inefficiencies in the form of implicit taxation and abuse of 
power, red tape, outlays on conflict resolution between special interest groups, etc.). To 
escape the Leviathan, agents can, in addition to the usual investment in physical capital, 
access the universe of crypto assets outside the reach of the mainstream state-supported 
economy. Crypto assets enjoy no legal protection, so converting them back into the real life 
consumption good is risky (due to digital criminality, hacking, regulatory crackdowns, etc.). 
A global ergodic solution is found for this model, demonstrating that crypto and conventional 
assets are capable of long-term coexistence, although the use of crypto assets, far from being 
universal, tends to be the choice of the wealthier part of the population. 

 
Abstrakt  

 

 

V článku zkoumáme stochastický dynamický model s rizikovými reálnými investicemi a 
kladným dlouhodobým tempem růstu. S rostoucím bohatstvím je ekonomika zahlcována 
rostoucími náklady plynoucími z její složitosti (klasické „leviathanské“ neefektivnosti v 
podobě implicitního zdanění a zneužívání moci, byrokracie, výdajů na urovnání sporů mezi 
zájmovými skupinami, atd.). Aby unikly Leviathanovi, mohou ekonomické subjekty kromě 
obvyklých investic do fyzického kapitálu rovněž využít přístup ke kryptoaktivům, která jsou 
mimo dosah mainstreamové státem podporované ekonomiky. Kryptoaktiva nepožívají žádné 
právní ochrany, a proto je jejich přeměna zpět na spotřební zboží z reálného světa riziková 
(kvůli digitální kriminalitě, hackingu, regulatorním zásahům, atd.). Pro tento model 
nacházíme globální ergodické řešení, které ukazuje, že kryptoaktiva a konvenční aktiva jsou 
schopna dlouhodobé koexistence, přestože využívání kryptoaktiv zdaleka není univerzální 
a zpravidla jej volí bohatší část populace. 
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1. Introduction  

Observers of the rise of Bitcoin and subsequently other crypto-currencies and assets during the 
last decade must have noticed that their users are largely recruited from those who are not simply 
looking for investment diversification, but are, more generally, dissatisfied with the conventional 
institutions that are supposed to provide support for their savings and wealth creation. Examples 
range from retirees whose pension savings are being eroded by monetary easing, through 
overregulated medium-sized enterprises (both in developed countries) to high-net-worth 
individuals and families living under politically oppressive or unstable regimes in emerging 
economies. 

Not all, rather only a small part of, institutional complexity costs have the nature of taxes. Instead, 
among the manifestations of the costly complexity of wealth management is the persistence of 
negative (effective) interest rates on a wide range of conventional deposits. Negative rates are 
becoming policy-engrained, while policymakers now seem more averse to recessions than their 
official mandate would require, compared to a couple of decades ago. Savers are then forced to 
react to the financial repression by seeking non-conventional (and usually illiquid) store-of-value 
alternatives. Another novel sort of complexity facing private individuals is related to the 
mushrooming administrative obstacles in advanced countries (accompanied by supportive rhetoric 
of the official punditry) to the use of cash. For those who value privacy (there are substantial 
numbers of such beyond those involved in illegal activities), this means additional outlays on 
transaction anonymization. 

In general, as modern societies tend to become more complex and difficult to operate (Turchin et 
al., 2018 and Whitehouse, 2019; see also Tainter, 1990, for a historian’s perspective), many 
institutions, some dating back to the Industrial Revolution of the 19th century or even older times, 
and which we mostly take for granted, have a hard time playing their designated roles. Certain 
ones only survive in the form of empty shells void of actual function. The use of others according 
to purpose consumes much more resources today than it did when they were created. It is enough 
to look at the largely self-serving judicial system, whose operators collectively benefit from the 
legal process (in particular, but not exclusively, in the area of civil law) becoming increasingly 
expensive, unwieldy, and clogged. One of the consequences is that the enforcement of many laws 
becomes fairly improbable for those unwilling or unable to spend extravagant sums to pay their 
way through the courts in a procedure that is at risk of not being completed within one’s lifetime. 
State bureaucracy, to which innumerous rival lobbies and NGOs are connected with the umbilical 
cord of the “revolving door effect”, offers a similar picture. The state powers (to which, in the 
world of today, one must add other comparably influential organisms such as supranational 
corporations, e.g. big tech, and other comparatively powerful special interests) were once 
compared by Thomas Hobbes, one of the leading political philosophers of the Enlightenment, to 
the Leviathan creature of the Old Testament Book of Job.1 In our times, one finds that the ageing 
beast has become much less nimble, but all the more voracious. 

                                                           
1 According to experts in the subject, this metaphor is a natural reflection of Hobbes’s understanding of political 
force, since both “Leviathan and Hobbes’s sovereign are unities compacted out of separate individuals; they are 
omnipotent; they cannot be destroyed or divided; they inspire fear in men; they do not make pacts with men; 
theirs is the dominion of power.” (Mintz, 1989, p. 5) 
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To be sure, there also exist numerous manifestations of social complexity not due to self-
interested abuse of the tragedy-of-the-commons type. A lot of costly complexity is an unintended 
consequence of well-meant collective effort to enforce prudent handling of systemically important 
risks, financial and other. For instance, the various safety nets and prudential regulation measures 
that were introduced in the aftermath of the GFC may have reduced the vulnerability of the global 
financial system to a quick spread of market turbulence. However, this has come at a cost of 
rapidly expanding financial supervision and reporting mechanisms. The need to comply with them 
is becoming increasingly resource-consuming not just for the providers, but also for the users of 
financial intermediation. So, while we have been able to reduce the threat of an uncertain 
breakdown, the growing precautionary effort has become a certainty for the indefinite future. 

It is important to note that the aforementioned problems are naturally felt more intensely as 
individual and aggregate wealth grows. The marginal benefit of every extra dollar earned within 
mainstream society falls, since any nominal wealth increase becomes costlier to secure, both with 
time and in relation to the wealth level. Under these circumstances, the crypto asset ecosystem, 
which (seemingly) knows no state borders, red tape, or special interests able to bend the rules, 
offers an attractive escape route. There, transparency and predictability if not of the 
counterparties, then at least of the procedure is the central promise.2 

As is well known, the viability of crypto assets stands and falls with their take-up numbers, so 
they are only worth anything as long as enough people are willing to hold them. In principle, a 
major fall in trust can reduce any crypto wealth to zero. This is why there is a popular perception 
of crypto assets as bubbles par excellence: unproductive assets with positive prices enabled by 
purely psychological factors. Still, if the only alternative to crypto assets is the constantly falling 
marginal benefit from conventional assets, then at some point a sufficiently wealthy agent has 
nothing much to lose by withdrawing into the crypto world for store-of-value reasons. Although 
the Leviathan does not protect his rights there and is unable to enforce contracts, whereas 
breakdowns, trust abuse, and fraud are rampant in the cyberspace, these are mere possibilities, 
whereas the continuously flattening absorption curve that is typical of effective earnings on 
conventional assets is a near certainty. Many decide to take their chances. Crypto assets start 
resembling a rational bubble (cf. Martin and Ventura, 2018), although in our set-up, as opposed to 
other rational bubble models, we do not need to posit the existence of an exogenous variable 
responsible for its positive market price: there is a generic endogenous crypto demand. 

The question arises whether the crypto option is merely an ephemeral appearance created by 
special circumstances of modern society and bound to disappear as soon as its temporary benefits 
are wiped out by an episode of major turbulence followed by a crisis of confidence and an ensuing 
terminal fire sale (i.e., a classical bursting bubble), or whether its existence is a part of some 
emerging sustainable economic order. Can this order be characterized in abstract terms as an 
equilibrium with intuitive choice-theoretic foundations? The model proposed in the present paper 
tries to answer this question in a relatively simple producer-consumer environment with risky 
investment opportunities. An important feature of this environment is a persistent income 
                                                           
2 In principle, any asset able to offer a way out of deterministic complexity at the cost of random losses would 
perform the same function. However, in the modern age, once one requires such an asset to be truly global, 
universally accessible, and free of centralized regulation, the set of possibilities is quickly reduced to the ones 
offered by existing and conceivable crypto assets residing in the cyberspace. There is simply no other way to 
reach out to all the interested parties than by creating digital commodities and distributing them online. This is, 
essentially, all we require from the crypto asset in this paper. 
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inequality in a large agent population. Then, it turns out that the bubbly aspects of crypto, 
although present, affect different agent cohorts to a different degree. Fire sales are widespread 
among the poor, who are prone to giving up on crypto in distress. On the contrary, middle- and 
high-income agents generate a stable crypto demand that improves aggregate (conventional) 
investment and consumption levels. 

Formally, we set up a dynamic stochastic discrete time optimization model with two sources of 
uncertainty: TFP and crypto-to-fiat conversion loss. The market for crypto assets clears in every 
period. Differently from many other DSGE applications, our solution method does not rely on 
perturbation analysis, but instead belongs to the full distribution category. Agents have Markov 
policy functions of two state variables (physical capital and crypto holdings) that define optimal 
consumption, acquisition of new tokens, and back-conversion of previously held tokens. The 
solution method is one of the central elements of the study. 

We are able to compute the equilibrium for a broad class of initial capital and crypto asset holding 
distributions. In addition, we provide a numerical procedure for deriving an approximation for an 
ergodic distribution of the two asset holdings across the agent population, i.e., such that is 
preserved by the model dynamic under optimal policies.3 

Naturally, it would also be possible to construct an additional asset class with features imitating 
existing crypto, held in equilibrium in a positive amount alongside conventional assets, in a 
considerably simpler static model. However, our objective in this exercise is to experiment with 
the infusion of crypto assets into a much richer stochastic growth environment and see how they 
fare under conventional macroeconomic dynamics. Ultimately, the results should pave the way for 
introducing crypto into the existing macro DSGE model class. To assure that this introduction 
happens on a solid formal basis, we do not just state the model, but also compute a full 
distribution solution in all the cases considered. The numeric solution techniques developed for 
dynamic stochastic optimization problems in discrete time allow one to address the cases of both 
idiosyncratic and aggregate shocks. However, the present exercise concentrates on the 
idiosyncratic shock case, leaving the issue of the crypto economy response to a systemic 
disturbance to subsequent research. 

We find, among other things, that 

(1) for any non-degenerate initial distribution of physical capital and crypto asset holdings 
that result in positive aggregate output growth there exist optimal investment and crypto 
transaction policies such that agents with capital endowments above some minimal level 
hold non-negative crypto quantities; the market-clearing crypto price in this equilibrium is 
positive; 

(2) the aggregate growth rate of physical capital/output is higher when crypto assets are 
allowed, as opposed to the same economy without the crypto option, and the same is true 
for aggregate consumption; 

(3) when the crypto opportunity exists, it is always used, even by a subset of agents with zero 
initial crypto endowment, provided their physical capital endowment lies above a certain 
threshold; 

                                                           
3 Since we consider a balanced growth model, ergodicity here refers to the distribution of an appropriately 
discounted (effective) vector of state variables. The exact specification is given in section 3. 
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(4) under the ergodic distribution of physical capital/crypto quantity pairs, physical capital 
levels are positively correlated with crypto holdings; 

(5) under the ergodic distribution, agents with higher crypto holdings invest somewhat less in 
physical capital than those with lower crypto holdings; nevertheless, the aggregate 
investment is higher than in the same economy without crypto and under physical capital 
distributed ergodically, since the agents are wealthier on average (support of the marginal 
physical capital density of the ergodic measure of asset pairs is positioned to the right of 
the ergodic physical capital distribution support in the no-crypto economy). 

While the ergodic asset distribution is the natural way to describe the hypothetical long-term 
condition of the dynamic system defined by the model, optimal policies exist for every initial 
asset distribution. We do not directly address the question of convergence speed (or its exact 
meaning, given that ergodicity refers to discounted, or growth-corrected, and not original, 
quantities), but observe that, qualitatively, the computed investment policy functions under 
ergodic and non-ergodic distributions are quite similar. For instance, they always generate a 
region of crypto non-adoption (in which originally poor agents reside) as well as another region in 
which agents do not consume anything out of conventional income. Specifically, somewhat more 
well-off agents than those who pass on crypto completely, split their conventional earnings 
between new investment and new token purchase, whereas consumption is fully financed by token 
back-conversion. In this way, they avoid paying any tribute to the Leviathan and remain only on 
the production side of the conventional economy (they have to make some real investments, since 
crypto assets do not have direct productive uses). On the contrary, wealthy agents seem not to 
mind a limited Leviathan presence in their lives, but improve their welfare by engaging heavily 
with crypto to the detriment of physical investment (in comparison with the no-crypto 
benchmark). In any case, their consumption out of conventional income is lower than in the 
benchmark. 

The aforementioned findings suggest that crypto assets, notwithstanding their partially bubbly 
nature, are able to improve welfare in situations in which they help reduce structural deficiencies 
in an economy. Still, the derivation of equilibria in the present setting hinges on the presence of 
multiple agents with sufficiently diverse asset endowments, i.e., it would be impossible in a 
classical representative agent model. To be precise, a representative agent in our setting can only 
exist initially, since unevenly distributed exogenous wealth shocks (in the form of random total 
factor productivity and random crypto conversion losses) in all subsequent periods lead to a 
permanently heterogeneous agent population. 

1.1 Literature Review 

Since even the earliest crypto assets are barely ten years old, there has not been enough time for 
an extended theoretical literature on them to emerge. Nonetheless, given the early-recognized high 
level of policy relevance, academic journals soon began to publish policy-oriented essays that 
strived to pin down the proper conceptual role of cryptocurrencies as an object of economic 
inquiry (Dwyer, 2015, Yermack, 2015, Weber, 2016). At the same time, taking the self-
proclaimed aspirations of Bitcoin and its imitators to create a world without fiat money all too 
uncritically, the bulk of theoretical work on the emerging crypto seeks inspiration in the existing 
currency competition literature. So, Fernández-Villaverde and Sanchez (2016) analyze 
competition among privately issued digital currencies (tokens) and the monetary authority issuing 
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fiat money, in a dynamic optimization set-up with production and decentralized markets with 
random matching. Their point is to demonstrate the inefficiency of private moneys, but with the 
ability of the fiat money issuer to implement an efficient policy under the pressure of private 
competition. The topic is further developed in Fernández-Villaverde (2018). Cryptocurrencies as 
“outside money” in the paradigm of Kareken and Wallace (1981) are examined in Garratt and 
Wallace (2018) to demonstrate the possibility of their exchange rate indeterminacy. Demand for 
alternative means of exchange, including one that shares with cryptocurrencies (not just Bitcoin) a 
purely private supply and operation outside of any official policy perimeter, is modeled in 
Schilling and Uhlig (2019a,b) in a simple endowment economy environment. A tentative 
exploration of a virtual currency exchange rate can be found in Bolt and van Oordt (2019), in 
which a two-period model of currency choice under specific assumptions about the new currency 
acceptance drivers (technological adaptability among them) is used to state sufficient currency 
success conditions. Brunnermeier and Niepelt (2019) provide a model in which allocational 
equivalence of a private means of exchange (encompassing some, but not all existing types of 
cryptocurrencies) with the fiat money can be achieved by a monetary authority under very 
restrictive, and therefore hardly practicable, conditions. All the mentioned papers view crypto 
assets strictly from their means of exchange side, largely leaving the store of value role out. 

To the extent crypto assets feature bubbly properties, the literature on rational bubbles (Martin 
and Ventura, 2018) overlaps with the topic of the present paper. However, differently from many 
existing rational bubble models, our foundational assumptions concerning market psychology are 
very modest. In our model, once even a few agents get interested in crypto assets, the latter start 
providing a store-of-value service. Therefore, the bubble side of crypto assets, although present, is 
subordinate to them being a conduit to the “silent anti-Leviathan insurgency” mentioned earlier. 

Empirical crypto analysis is somewhat richer than economic crypto theory, mostly due to the 
abundance of publicly accessible data on Bitcoin and other cryptocurrency prices, often on 
transaction volumes as well. This allows one to get deeper insights into individual market 
segments. So, Kristoufek (2015) uses wavelet analysis not just to identify the main Bitcoin price 
drivers, but also to separate the special role of Chinese investors in the Bitcoin market. The 
identified speculative impulses coming from Chinese investors underscore our point made earlier 
about the significance of social climate for the decision to engage in crypto investments. Early 
studies of the bubble properties of Bitcoin can be found in Cheah and Fry (2015) and Cheung et 
al. (2015), i. a. There are also studies that use a rational bubble-inspired OLG-model framework 
that informs an empirical estimation of the fundamental cryptocurrency price and sources of 
deviation therefrom (e.g. Biais et al., 2018). Some research is emerging regarding the empirics of 
initial coin offerings (Rhue, 2018, Burns and Moro, 2018). As far as we are aware, there have not 
yet appeared any attempts in the academic literature to link crypto demand to wealth, social status, 
or other sociological categories. 

The rest of the paper is organized as follows. Section 2 describes the model and formulates the 
generic optimization problem. Section 3 states the optimality conditions and introduces the 
solution method. Section 4 explains the equilibrium concept used and outlines the equilibrium 
search procedure. It also describes the numerical results obtained for both the bivariate lognormal 
and ergodic asset distribution cases. Section 5 concludes. 
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2. Model 

2.1 Production 

We consider an infinite-horizon discrete-time closed yeoman economy populated by a large 
number of infinitely lived small producers-consumers. Their distribution is described by a 
measure  on the measurable “agent space”  to be specified later. Each agent has a standard 
power production function4 concave in own physical capital k: 

,      (1) 

(time subscripts are omitted for simplicity, as all values refer to period t). Here,  is the own 
capital share in output y, A is stochastic total factor productivity (TFP), and  is the aggregate (or 
average per-capita, given that the mass of agents is normalized to unity) physical capital level: 

.     (2) 

This means that we employ the learning-by-doing externality of the Harrod (1939), Domar 
(1946), Romer (1986), and Lucas (1988) endogenous AK-growth type. Physical capital partially 
depreciates every period: 

1 ,     (3) 

with It being new investment in period t. Productivity shocks across periods and across agents are 
i.i.d.  

Investment in physical capital generates output next period that can be spent on consumption, c, 
new physical capital (at constant unit price), I, or conversion to crypto assets at the prevailing 
market price. (All agents are price takers.) The unit of the consumption good is the numéraire. 

2.2 Tokens 

We imagine crypto assets to be available through a virtual investment fund, so the price means the 
cost of one share of that fund. This abstraction is meant as a shortcut for a variety of really 
existing possibilities to acquire crypto assets (mining, participation in an ICO, buying at a crypto 
exchange, etc.) that we do not model explicitly. Accordingly, underlying the purchase fiction of 
one crypto fund share in our sense, both a purchase in a secondary market and mining (in the 
latter case, one actually purchases computer time, energy, overheads, etc. instead of the token 
itself) can take place. Once acquired, the share can be distributed – presumably optimally – 
among the available tokens in a further unspecified way. For time- and space-saving reasons, we 
will use the term “token” instead of “crypto fund share” throughout the text unless the term causes 
confusion. 

To accommodate a non-trivial market for tokens in the model, we resort to another fiction that 
constitutes a deviation from the representative agent baseline. Namely, we think of the agent as a 

                                                           
4 Numerical exercises show that the quantitative results of the model may be sensitive to the production function 
specification. Therefore, the current standard Cobb-Douglas choice should only be viewed as an experimental 
first pass. 
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household of two in which one member is responsible for buying new tokens and the other for 
reconverting currently held ones into conventional goods. The two members do not coordinate 
their actions within the period, taking the choice of the other as given. A more widespread 
artificial device making it possible to create a non-trivial transaction volume in an asset market 
would be to exogenously impose agent population heterogeneity in terms of preferences or 
technology. We prefer the variant with the multimember household for a number of reasons. First, 
it better responds to our intention to analyze a set of agents with identical structural parameters, 
whose members only differ in endowments. Second, in the case of crypto assets, acquisition and 
sale are not always symmetric activities (only transactions on a crypto exchange are); mining and 
ICO participation are one-way only, so it is not unnatural to separate the buyer and seller roles. 
Even with regard to crypto exchanges, their users, outside of the narrow group of professional 
traders (and those in no way exhaust our idea of the fictitious yeoman household in this model), 
approach them with a qualitatively different perspective depending on the direction of their trade: 
buyers seek relief from the Leviathan pressure in the future, whereas sellers cover current 
consumption needs. 

Another minor asymmetry between crypto buyers and sellers is in the information imperfection 
faced by the seller. We assume that at the moment of sale quantity choice, the agent does not 
know the realized value of the conversion shock. The assumption is not central to the results, but 
appears to generate smoother and neater numerical outcomes. Besides that, the value of the back-
conversion proceeds in terms of the numéraire is obtained by multiplying the conversion function 
(see below) by the market price. Accordingly, the seller cannot separate price and conversion loss 
risks, which explains why it would be unnatural for the agent to condition on price when selecting 
optimal policies (see section 3). Note that for the buying member’s decisions, the value of the 
conversion shock is unimportant, since he takes sales proceeds as an exogenous lump-sum and 
does not examine their composition. 

If H is the amount spent by the crypto-purchasing member of the agent household to buy tokens at 
the start of the current period and p is the current price, H/p is the number of new tokens. During 
the same period, the second household member decides on how many of the existing tokens, S, 
will be converted back into conventional consumption units. At the end of the period, the joint 
actions of the two household members result in the following evolution of the numbers of crypto 
fund shares in the agent’s possession: 

1  ,     (4) 

where R is the crypto-internal rate of growth (the source of which may be an ICO, mining, and 
whatever creation mechanism the issuer chooses) dependent on the aggregate number of tokens in 
existence in the previous period:  . 

Analogously to (2), 

      (5) 

for every period t. We allow for a network externality making the rate of growth of crypto wealth 
lowest (nominally zero, but effectively negative due to the random loss rate; see below) when no 
one is interested in it, and strictly growing with the number of tokens in circulation. In other 
words, the crypto universe only exists as long as people care about it. At the other extreme, 
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function R is assumed to have a finite positive limit at infinity, so the externality becomes 
irrelevant as soon as crypto assets take off and become part of a balanced-growth equilibrium. 

The reason people would like the crypto universe to persist is that they can (hope to) convert 
crypto back into fiat money: as long as there are willing crypto buyers, one can always sell, even 
though the conversion costs are uncertain. These costs include not just the price at a crypto 
exchange which equalizes aggregate supply and demand, but also cyberspace-specific risks. 
Namely, the crypto universe is a world without legal protection or security of contract 
enforcement. There is poorly detectable and nearly unprosecuted fraud, hacker attacks, 
administrative intrusions by state authorities, technical incidents, etc. We summarize these effects 
by means of a stochastic conversion loss rate, ranging from zero in the most favorable case 
(although with low probability) to an upper bound able to deprive one of more than two thirds of 
the crypto asset value. The latter extreme is also a low-probability event; losses of several 
percentage points are most common. The number of consumption units available after the back-
conversion of S tokens is equal to , , with p being the current token price and function L 
depending on the random agent-specific loss parameter, l, and the amount of tokens, S (the loss 
risk is parameterized so that L is increasing in l; the latter is a strictly positive random variable 
with support bounded by unity). L is strictly increasing and strictly convex in S on the positive 
half-axis, L(l,S)<lS and L(l,0)=0 for every l. One can think of L(l,S) for every fixed l as a function 
that takes off at the origin and then asymptotically approaches a straight line with slope l but lies 
below the diagonal. This means that the marginal revenue from back-conversion is dominated by 
the below-unity L-slope at the intercept for tiny conversion quantities (S near zero), but becomes 
close to l (which itself can be unity, i.e., no conversion losses, in the most favorable case) for 
large S. This construction was adopted to reflect the fixed back-conversion costs relevant for very 
small crypto transactions. A typical conversion curve is depicted in Figure A1. 

For simplicity, we assume i.i.d. conversion shocks both across periods and across agents 
(although it would be interesting to investigate the effect of a population-wide common shock 
component to study, for instance, the implications of a systemic event in the crypto market; this is 
a topic of future research). The support of l is assumed to lie in the interval , 1  with lmin>0. 
In this paper, we work with a discrete distribution with only three realizations, lmin, lmiddle, and 1, 
which speeds up the calculations without affecting the nature of the results. The same is done for 
TFP shocks. Repeated random draws from this 3x3 shock table are able to generate a very dense 
set of asset pair (physical capital and crypto) realizations even after a relatively small number of 
periods. This set approximates continuum sufficiently well for our purposes (although, in the 
calculations, we return to a finite, even though big, number of points due to the need for 
discretization), so small-size event spaces of discrete shocks are enough in the present context. 

2.3 Financing Consumption 

Why would anybody want to hold crypto assets if their back-conversion entails a material loss 
risk? The answer lies in the nature of conventional goods production in the economy discussed. 
The societal complexity mentioned in the introduction takes the quantitative form of a decreasing 
effective rate of output absorption by its producers. 

Let a=y-I be the agent’s output less savings in the current period. This is the “pre-Leviathanian” 
disposable income coming from his production facility. Given the losses arising in complex 
societies for wealth protection reasons (both in the form of taxation and other outlays on handling 
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increasing complexity), the actual amount available for consumption will be n(a). We assume a 
strictly increasing but concave function n, n(a)<a for all positive a. The wasted difference 
increases convexly with a. A typical function n is shown in Figure A2 (cf. the dotted 45-degree 
line, of which n falls increasingly short with growing a). 

Observe the positive intercept of the curve in Figure A2, as if there existed some universal basic 
income (UBI) arrangement for the poorest in the economy. This is done for technical reasons, as 
infinite marginal absorption for zero-income agents, although not adding anything to the analysis 
of the model, would result in perverse behavior of the numerical solution in the close vicinity of 
the origin. In equilibrium, we do not have anyone with zero income, so the UBI assumption is 
formally moot, but it removes the need to seek interpretation of counter-intuitive endpoint effects. 
For the same reason, we smooth out and remove the infinite marginal product of capital at the 
origin of our production function in (1) by means of a special factor only relevant for small k-
values (not shown in (1) for simplicity). 

Only the funds taken out of the official economy and exiled in the crypto universe are exempt 
from the complexity burden. (Remember, this was exactly the openly declared objective of the 
first crypto currency creators.) Therefore, the agent has the opportunity to withdraw a part of 
produced income from under the Leviathan’s muzzle, at the expense of reducing not only 
consumption out of legitimate sources, but also investment in future productive capital. At the 
same time, the agent can convert some of his pre-existing crypto holdings into fiat money and add 
them to his consumption expenditure, again without the Leviathan being able to snatch any of 
these conversion proceedings for itself. Formally, the overall consumption of the agent is 

, .     (6) 

Remember that a=y-I is the current productive income less savings and H is the amount spent on 
token purchase. When I and H are chosen optimally, the agent escapes the increasingly inefficient 
Leviathan into the crypto universe and raises current consumption at the expense of curtailing 
investment in his conventional production facility. In aggregate, there is also adverse pressure on 
the growth rate due to the TFP-externality of the posited endogenous growth mechanism. And 
even this growth-sacrificing “re-routing” can only function if some other agents do the same and 
keep the crypto universe away from collapse. Can such an economy possess a dynamic 
equilibrium in which crypto assets survive and make a positive contribution to growth? Unlikely 
as it may seem in view of what was said above, there are equilibria that support both growth and 
crypto, and they also turn out to be welfare-superior to economies without the crypto option. 

Since this is a growth model, we adjust the otherwise standard power utility in every period to 
include the reference level of previous period consumption. Thus, let 

̅      (7) 

be the aggregate (average per-capita) consumption in the preceding period, and work with a time-
separable utility that in each period is given by the usual power of the consumption index: 

̅ .    (8) 
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Here,  is the intertemporal substitution elasticity (and risk aversion) parameter and  is the 
agent’s current consumption share in the Cobb-Douglas consumption index. ̅ is treated by the 
agent parametrically. The index can be also rewritten as 

̅
̅  

(the left-out time subscripts are the same as in (8)) and interpreted as the reference consumption 
level (the last-period average per capita) times the -power of the ratio of own current 
consumption to the reference level. That is, the agent values his individual consumption 
improvement compared to the most recent recorded population average. 

In the calculations, we take a value of  close to unity. 

The agent’s problem at any given date t is to select the stream of triplets (I,H,S) over all future 
periods to maximize the intertemporal expected utility 

 

( is the usual discount factor; in growth models it is usually assumed to be small enough to make 
the discounted sum of the aggregate consumption utilities finite) with u defined in (7) and (8). The 
optimization is subject to technology constraints (1)–(5), the resource constraint (6) and the non-
negativity constraints on token holdings (x≥0, i.e., crypto cannot be short-sold), legitimate income 
(a-H≥0, i.e., one cannot request a “tax credit” from the Leviathan), and consumption, in every 
period. 

The parameterization of the model is summarized in Table A1. 

The conditional expectation is taken over the future realizations of both exogenous risk factor 
processes. We work with discrete distribution examples in the numerical part of this study, for 
which the following notation will be used. TFP can take a finite set of values ∈  with 
probabilities ∈ , whereas the conversion shock takes a finite set of values ∈  with 
probabilities ∈ . As already mentioned, for our purposes in this paper it is enough to work 
with sets  and  consisting of just three elements each. 

As mentioned earlier, the current-period realization of the token conversion shock is unknown at 
the time of that period’s decisions, whereas the TFP shock is known (i.e., the agent knows the 
output level from (1) when deciding upon new investment and operations in the crypto market). 
We are looking for Markov policy functions, i.e., such decisions that, for every period, only 
depend on the values of income and asset variables y, k, and x available at the start of the period. 

The usefulness of dynamic stochastic models of the type defined above is seriously limited by 
difficult access to their actual solutions (the popular “non-stochastic steady state” fiction should 
not count here, since it is largely immaterial to the behavior of the true solution). Therefore, our 
effort is focused on developing numerical procedures that inform us about the true (also called 
global, or full-distribution) solution of the generic individual optimization problem. Subsequently, 
we will derive equilibrium properties consistent with these solutions under appropriate aggregate 
constraints. The non-stochastic steady state, or perturbation exercises around it, plays no role in 
our analysis; it could not even if we wanted it to, which we don’t. What can remain concealed in 
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classical macro exercises such as the calculation of IRFs for conventional policy shocks, would be 
absurd, and conspicuously so, in the process of developing explanations for long-term investment 
patterns. Here, we model attitudes to crypto and some of their macro implications, without 
pretending to know the future. Our long-term equilibrium will be a time-homogeneous dynamic 
system in which the state variables follow an ergodic distribution. We will provide a discrete 
measure that approximates this distribution (one could call it “near-ergodic”) for the given 
discrete approximation of equilibrium optimal policies. 

3. Optimal Policies 

3.1 Preliminaries 

As was already said in the previous section, we assume that, at the beginning of every period, 
there are many agents with many different physical capital and token possessions. Shock 
realizations transform the population distribution after every period. It is natural to ask what 
happens with an arbitrary distribution at the end of the period if agents’ actions are subjectively 
optimal, but also, what shape this population is likely to take after many periods. Therefore, we 
consider two problems: one is the calculation of optimal policies under an arbitrary initial 
distribution, and the other is the calculation of an ergodic distribution, i.e., such that is invariant 
under agents’ optimal actions given this distribution. 

Before proceeding, we observe that population statistics enter the agent’s problem only through 
population averages , , and ̅, as defined in (2), (5), and (7), as well as through the crypto 
market clearing condition in every period: 

,     (9) 

which pins down the token price pt. Note that, in general, one must also include the time index of 
the population measure  in (2), (5), and (7) in the same way as in (9), unless the ergodic 
measure is meant. However, given the Markov policy functions that we analyze, only the measure 
at one particular date (the one with which the agents start the period) enters the calculated solution 
of the agent’s problem, so the time index can usually be omitted without causing ambiguity. 

Some features of the optimization problem are the same regardless of the ergodicity condition. 
We will state them after the introduction of a more convenient set of state variables. 

To begin with, in view of the information structure introduced (the TFP realization is known at 
the start of the period), and provided the next-period physical capital is properly expressed 
through policy functions, an agent’s income less investment in any period t is more 
parsimoniously expressed by means of the gross (i.e., cum-depreciated capital) disposable income 
variable 

1  

than by the physical capital kt or output: at=qt-kt+1. So, it is convenient to transit from the state 
variable vectors (y,x) or (k,x) to pairs (q,x). 
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Next, as is usual in models of growth, we introduce effective state variables by normalizing q and 
x with respect to the corresponding (growing) aggregates: 

,  = 1 ,  . 

The law of motion for tokens in an agent’s possession, (4), can be now rewritten as 

1 . 

But, combining (4), the expression for the total quantity of tokens in circulation, (5), and the 
market-clearing condition (9), one observes that 

1 , 

so the law of motion for the effective individual token holdings is simply 

. 

Now we give the definitive form to the policy functions that will solve the agent’s optimization 
problem. The purchased token quantity will be written as 

, , .     (10) 

That is, the agent acquires the quantity of new tokens equal to the current gross disposable income 
times the normalized policy value h per unit of q, where h is assumed to be a function of current-
period effective state variables. The latter are: xnt-1, the effective, or aggregate growth-adjusted, 
number of tokens carried over from the last period, and qnt, the effective gross disposable income 
generated by the last-period physical capital. Disparity of time superscripts between qn and xn is 
usual in models with investment, as the physical capital needed to produce today’s output cannot 
be set instantaneously, i.e., it had to be determined a period earlier. 

Recalling the non-negativity conditions on taxable income at-Ht=qt(1-ht)-kt+1, we see that all h 
must lie between zero and one. Note that qt-Ht=qt(1-ht) is the part of the disposable income one 
decides not to hide in the crypto universe, i.e., the one to which the Leviathan’s powers extend.5 

The same non-negativity condition explains why it is useful to cast the investment policy function 
in the form 

1 , ,      (11) 

for some v, which is, like h, assumed to be a function of effective state variables and to lie 
between zero and one. Quantity v is the normalized future capital level per unit of “Leviathan-
controlled” disposable income qt(1-ht). 

Expression (11) can be integrated over the agent population to render the following evolution law 
for the average per-capita physical capital: 

                                                           
5 Observe that here, as well as in the sequel whenever confusion is unlikely, we can replace the arguments of a 
function by a simple time subscript for simplicity. 
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1 , , , 

in which , dependent on the time period only through the measure , expresses the aggregate 
capital growth rate between periods t and t+1. In particular, for ergodic measures, the capital 
growth rate is time-independent. The effective individual physical capital at time t+1is 

. 

These transformations provide us with a convenient form of the law of motion for qn: 

, , 1 , ,  .    (12) 

Given (10) and (11), the expression (6) for current consumption can be restated as 

1 1 , . 

It remains to carry out the appropriate normalization of the token back-conversion variable S. It 
will be written as a multiple of the last-period individual token possession, xt-1, and the normalized 
back-conversion quantity taken to be a function of effective state variables: 

, .     (13) 

To rule out token short-sales, we must impose the restriction st≤1+Rt in all periods. Its formal 
justification will become clear shortly. 

Let us rewrite the market-clearing condition (9) in the new notation. To do this, define the 
following normalized price as 

,

,
 .    (14) 

Again, analogously to the aggregate capital growth rate , this value depends on time only 
through the population asset distribution . In particular, pn is time-independent if  is ergodic. 
One can interpret pn as the market-clearing crypto price in an economy in which the last-period 
aggregate capital and token quantity are both equal to one. 

In terms of pn, (9) can be restated as 

. 

Combining this equality with (10), we can state the law of motion of xn as 

1  .    (15) 

Together, (12) and (15) are the pair of state-transition equations that we are using in the 
equilibrium calculations. Denoting their right-hand sides as, respectively, F and G, we can 
symbolically shorten them to 

, ; , , , ; , .  (16) 
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3.2 Individual Optimality Conditions 

As is usual in optimal control models with a strictly concave objective function and smooth 
monotonic state-transition rules, first-order conditions (FOCs) are necessary for optimality in the 
interior of the feasible region for the control vector. Sufficiency of FOCs holds in that region as a 
consequence of the concavity of the utility and the production function. For a subset of initial 
conditions, corner solutions apply instead of FOCs (for one, two, or all three variables), which our 
numerical procedure is able to detect. 

There are many equivalent ways to select the control variables. In our setting, it has proved 
convenient to make the following variables controls in each period: b=H/p – the number of tokens 
purchased, s=S/x – the proportion of currently held tokens to be converted into consumption units, 
k – the new physical capital level. For those, we compute partial derivatives of intertemporal 
utility Ut from section 2.3 to get 

 

∑ 1 , ′,    (17.1) 

,  

∑ 1 ,,    (17.2) 

	

       
 ∑ 1, . 
            (17.3) 
In (17.2), LS denotes the S-partial derivative of the conversion function L introduced in subsection 
2.2. Since, if we fix the two other control variables, the current-period consumption gets into a 
one-to-one correspondence with the current-period token purchase, (17.1) can be considered the 
closest analogue of the standard Euler equation for this model. Further, (17.2) is an analogue of 
the conventional portfolio choice equation: it strikes the standard balance between the immediate 
benefit from selling tokens today and the future expected fall in benefit due to their reduced 
holdings next period. Finally, (17.3) generalizes the usual condition on the marginal product of 
capital. (In the absence of explicit risk-free borrowing or bonds in this model, the equation cannot 
be directly reduced to a more familiar intra-period equality.)  

One obtains the FOCs for the agent’s problem by equating the right-hand sides of (17) to zero. In 
our approach, it is a system of functional equations for the triplet of Markovian policy functions 
(h,s,v) of the two most recent state variable values qn and xn. In the last subsection, we already 
invoked the equalities 

kt+1== qt(1-ht)vt,  at-ptbt= qt(1-ht)(1-vt). 

The first of them is needed to state the marginal product of capital equation (17.3) in terms of 
normalized states and decision variables. The second one is required to express the current-period 
consumption in these terms. The dependence on our choice variables, as was shown in the 
previous subsection, is the following: 
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1 1 , , 

and the analogous equation should be applied to consumption in period t+1. 

After transition to normalized variables, qt becomes . Also, , . In this 
equality, as well as everywhere else where they appear on the right-hand side of (17), the two 
state variables for date t+1 should be substituted for the right-hand sides of the state-transition 
equations (16). After that, the FOCs become a system of three functional equations for (h,s,v) 
dependent on the aggregate fundamentals pnt, , , Rt as parameters. The optimal policy 
functions are those that either solve the FOCs while remaining inside the bounds: 0<h<1, 
0<s<1+Rt, 0<v<1, or are positioned at either end of the admissible interval, dependent on the 
corresponding derivative sign in (17). For instance, the optimal purchase rate of tokens is zero if 
the right-hand side of (17.1) is negative after substituting h=0, etc. 

4. Equilibrium 

In principle, an agent’s optimal current-period decision in the environment defined above should 
have the form of a reaction function with the arguments being the agent’s own (two-dimensional) 
asset endowment and the actions of all other agents. However, the agents here are assumed to be 
small and identical except for the aforementioned endowments. Agents with identical endowment 
pairs should also act identically. Accordingly, beside the own endowment variable, the reaction 
function effectively depends only on the asset endowment distribution in the agent population. 
Moreover, given the decisions, the asset distribution in one period uniquely determines this 
distribution in the subsequent one. One is left with the reaction function depending only on own 
endowment and the asset distribution “at the start of the history”, i.e., in some initial period in the 
past. This initial distribution, known to everybody, will be assumed a primitive of the model. In 
short, our concept of equilibrium is a discrete-time analogue of the mean field game (MFG; see 
Lasry and Lions, 2007) equilibrium of continuous time dynamic games. 

In view of the above, the equilibrium of the economy described in section 2 will be defined as the 
triplet of policy functions (h,s,v) such that  

 the optimal controls in every period t for every agent with normalized endowment            
(qnt,xnt-1) are given by 

bt= qnt h(qnt,xnt-1), st=s(qnt,xnt-1), kt+1= qnt (1-h(qnt,xnt-1))v(qnt,xnt-1) 
 the aggregate levels of capital, tokens, and consumption are given by (2), (5), and (7), 

respectively 
 token markets clear according to (9). 

The asset distribution measure  is fixed in the initial period. Its evolution in all subsequent 
periods is described by the following transition rule (an analogue of the Fokker-Planck equation 
of continuous time dynamic equilibria): 

1, 2 1, 2
∑ Θ , , , ; , , , ; ,∈     (18) 
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for each rectangle 1, 2 1, 2 . Symbol B in (18) stands for the indicator function 
of the set B in its subscript. When  is ergodic, (18) becomes a functional equation for that 
measure.6 

Observe that the optimality conditions for a given period t, based on (17), contain only one asset 
distribution measure, namely, t. Therefore, one can compute optimal current-period policies for 
arbitrary t if one is able to solve (17) numerically. Subsequently, one can adjust the solution 
iteratively to match aggregate equilibrium constraints (2), (5), (7), and (9). Although not 
guaranteeing an exact quantitative match with optimal policies for the subsequent period, this 
procedure is able to provide valuable qualitative insights into the optimal within-period behavior 
of a self-organizing agent population exposed, for example, to an exogenous asset endowment or 
productivity shock. 

Our numerical solution procedure will then be based on first discretizing and subsequently 
interpolating policy functions (h,s,v) on an admissible (q,x)-domain and solving the FOCs implied 
by (17). In the next subsection, we show some computation results for an arbitrarily chosen asset 
distribution . After that, we examine the results for ergodic  in subsection 4.2. 

4.1 Non-Ergodic Initial Distribution of Asset Holdings 

3D graphs of optimal policy functions under lognormal physical wealth and token endowment 
distribution (mutually independent) are shown in Figure A3. 

The least surprising is the behavior of the new token purchase rate (in relation to current income) 
featured in panel (a): the richer one is, the more tokens one purchases. There is also a clear 
feedback loop in the demand for tokens: it is higher, the more tokens the agent already holds. In 
the extreme, when the agent does not have any tokens initially, he does not buy any unless he is 
extremely rich (in our example, it is the richest 1 per cent). 

The token conversion policy, shown in panel (b), is less straightforward. Individuals with below-
average physical possessions get rid of all their tokens at the end of the period, provided they had 
a low position in them initially. However, even agents with below-average physical wealth, if they 
start the period with an above-average amount of tokens, have a different attitude; they sell back 
between one half and two thirds of their token position. Agents in the upper range of the physical 
wealth spectrum are the best predictable: they sell relatively less tokens when they start with less, 
and relatively more when they start with more. Altogether, the surface of this policy function 
graph exhibits many reversals in all directions and does not allow for a unified intuitive 
interpretation in its entire range. 

Of special interest is the physical investment policy (panel (c)), since it allows for a direct 
comparison with economies without crypto. It turns out that a poor agent invests almost 
identically regardless of the presence of tokens (indeed, recall that such agents either ignore the 
crypto option completely or sell the few tokens they have purchased, within the same period). The 
difference begins to grow with wealth. Whereas in the cryptoless economy, the investment rate 

                                                           
6 Note that the current discussion refers to the case of idiosyncratic uncertainty. Analysis of systemic shocks is 
possible along the same formal lines, since, in this model, such a shock would be formally manifested as a jump-
change in one or more of the wealth distribution parameters (for example, an aggregate productivity shock would 
mean a shift in the physical wealth mass). 
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bottoms out with growing wealth (and even starts to rise in the range of very high wealth levels), 
an agent with zero or low initial token holdings has the investment rate as a strictly decreasing 
function of initial wealth everywhere. This happens because, as the agent becomes wealthier, 
crypto becomes increasingly relevant for him, so it pays to forego a part of future physical 
investment income in order to consume more from token turnover (tokens allow the agent to 
escape growing societal complexity). Another noteworthy effect is related to agents with a 
substantial initial token position. As this position gets bigger, the range of wealth levels for which 
it is optimal to choose the maximal admissible physical investment rate (v=1), gets wider. In that 
range, agents split current earnings between new physical investment and token purchase, 
spending nothing on consumption. All consumption is payed for out of proceeds from pre-existing 
token back-conversion. To be willing to partially consume out of conventional income, a crypto-
affluent agent must also be very affluent in conventional terms. 

The qualitative properties of the optimal policies described above are not specific to the particular 
choice of initial asset distribution. The distribution becomes quantitatively relevant for aggregate 
fundamentals, including the token clearing price and the growth rate. 

4.2 Ergodic Asset Distribution 

To derive the equilibrium under the ergodic asset measure, one needs the measure and the policies 
that simultaneously solve (17) and (18). Thanks to the low sensitivity of the optimal policy shapes 
to the exact choice of measure, one can iterate between the two equations to achieve convergence. 

Naturally, since numerical solutions require discretization, we do not solve (18) as it is stated in 
integral form, but use summation over a two-dimensional grid. Then, instead of a continuous 
bivariate density function, we look for a vector md of masses of individual cells (rectangles) in the 
chosen grid that satisfies the appropriately discretized version of (18). The right-hand side of this 
discretized version happens to be a linear operator, i.e., a very high-dimensional but sparse matrix 
H. For our computational purposes it is important that H maps the unit simplex into itself, i.e., 
every vector md with non-negative components summing up to unity is transformed into a vector 
with the same properties. In other words, H preserves the unit simplex of discrete probability 
measures. For matrix H to satisfy this property it is necessary and sufficient for its (non-negative) 
elements in each column to sum up to one. Unless one considers degenerate policy functions, the 
property is satisfied due to the regularity of the state transition map 

, ↦ , ; , , , ; ,  for every , , , . 

Since the unit simplex is a compact subset of the Euclidean space, H must possess at least one 
fixed point. It is, actually, unique, since multiplicity would violate the monotonicity properties of 
functions F and G. This unique fixed point  is the discrete approximation of the ergodic 
measure we are looking for. A close inspection of the structure of H suggests an educated guess 
that the support of  must be located around the convex hull of the fixed points of the 
aforementioned state transition map for individual realizations of the TFP shock A. This guess 
allows one to select a suitable zero iteration for recursive computation of . The iterative 
procedure happens to converge quite quickly. Then, alternating between solutions to discrete 
approximations of (17) and (18), one arrives at the numerical approximation for optimal policies 
in the ergodic equilibrium. 
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Of the wide range of results one can obtain from inspecting the ergodic numerical solution, we 
select the observations referring to the comparison of ergodic states of economies with and 
without tokens. To begin with, one finds that investment rates are much less sensitive to the 
current physical wealth level when tokens are absent (Figure A4). Qualitatively, this finding holds 
for other than ergodic asset distributions as well. However, in the ergodic case, the behavior of 
agents with a zero initial token position differs more visibly from the tokenless case than in the 
lognormal distribution case studied in subsection 4.1. Not surprisingly, the agents in the ergodic 
state have had sufficient time to internalize the potential of token utilization even if they currently 
happen to have zero crypto holdings. Another observation is that the aggregate capital growth rate 

 in the ergodic case is higher when tokens are present: agents are, on average, wealthier also in 
physical capital terms (Figure A5). 

We also collect results on the behavior of some key aggregate fundamentals in the ergodic 
equilibrium in Table A2 and, where relevant, compare them with the corresponding fundamentals 
in the tokenless economy under ergodicity of physical wealth distribution. What we observe 
immediately is that the market for tokens always has both sellers and buyers (it does not dry up), 
and the aggregate number of tokens grows at a positive rate. 

Another noteworthy finding is that the presence of tokens contributes to higher physical capital 
and aggregate consumption growth rates. This happens in spite of the fact that very rich persons 
invest less in physical capital (in favor of crypto) than in the tokenless economy. However, the 
aggregate physical growth rate is enhanced by the token presence because of the “middle class”. 
That is, more people of medium wealth can afford substantial (relative to wealth) physical 
investment when their consumption can be co-financed by crypto sales. This happens because, by 
channeling their expenditure through the crypto ecosystem, they are able to avoid some of the 
Leviathanian waste. Of course, in the present model the Leviathan is only present on the 
consumption side. If the model allowed social complexity costs to affect the production side as 
well, the result may have been different. 

As regards the properties of the ergodic distribution itself, the most important, in our view, is the 
non-negligible positive correlation between physical and crypto wealth (the last row of Table A2). 
That is, even if the economy starts with independently distributed physical capital and token 
endowments, it tends to converge to a state in which conventional and crypto wealth are partially 
aligned. Another salient feature of the ergodic distribution is a much higher variance of token 
possessions compared to physical capital (not shown in the table). However, in this case, the 
effect may be partially due to the discretization procedure, which, combined with the restriction of 
permanent token market clearing, generates some additional “raggedness” in the distribution of 
tokens across the agent population. Therefore, we refrain from drawing far-reaching conclusions 
from this feature. 
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5. Conclusion 

We have defined a dynamic model of a growing economy with stochastic productivity realizations 
and increasing complexity consequences of wealth accumulation, and allowed the existence of 
alternative (crypto) assets in this economy, the conversion of which into real assets lacks legal 
protection and is subject to random losses. For this world with “mainstream” and “alternative” 
wealth universes existing in parallel, we have developed a method of equilibrium derivation that, 
under many circumstances, demonstrates the existence of a multitude of agents who hold assets in 
both. There is also a “crypto non-adoption” subspace of (small) wealth value pairs; agents with 
endowments in this subspace do not use crypto assets. 

We define and provide a procedure for approximate calculation of the ergodic asset distribution 
across the agent population, i.e., we show the possibility of a long-term stable configuration of 
portfolios invariant under the dynamic rules of the economy constructed. This ergodic 
distribution, among other things, characterizes the long-term dynamic behavior of the crypto asset 
volume, the growth rate of which is a part of the balanced growth equilibrium. Altogether, when 
the economy starts with some degree of wealth heterogeneity across otherwise identical agents, 
there exist both short-term and long-term conditions for coexistence of conventional and crypto 
asset markets, with the latter being predominantly used by successful participants in the former. 
Idiosyncratic shocks that give rise to agent heterogeneity in the analyzed setting are not to be 
confused with the potential aggregate shocks (including, among other things, shocks to the same 
variables) able to radically change the adoption pattern, and aggregate implications of, crypto 
assets. This remains a matter for further research. 
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Appendix  

Figure A1: Revenue from Converting Token Amount S Back to the Consumption Numéraire 

 

 
Note: shown are the conversion revenue L(l,S) for l=0.75 (solid line), its asymptote with slope l (dashed 

line), and the marginal revenue (dotted line). 
 

Figure A2: Effective Absorption Curve as a Function of Disposable Income in an Economy 
with Increasing Social Complexity 

 

 
Note: the dotted line is the diagonal. 
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Figure A3: Optimal Policies under Mutually Independent Lognormally Distributed 

Endowments of Physical Wealth and Crypto Holdings 

(a) New token purchase 
 

 

 

(b) Token back-conversion 

 
(c) Physical investment 
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Figure A4: Investment Policy in an Economy with and without Tokens 

 

 
 
Note: the orange line shows the investment rate of an agent with zero initial token holdings; the blue line is 

the investment rate in the tokenless economy 
 

Figure A5: Marginal Physical Wealth Density of the Ergodic Distribution of Asset Pairs, 
Compared to the Physical Wealth Density in the Tokenless Economy 

 

 
 
Note: the solid line is the marginal physical wealth density in the economy with crypto; the dotted line is 

the physical wealth density in the tokenless economy 
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Table A1: Parameterization 

Variable/Function Description Value/Functional 
form 

 Capital share 0.33 
 Time preference rate 0.97 
 Capital depreciation rate 0.03 

 Share of current consumption in the 
consumption index 

0.9 

 Consumption substitution elasticity 3 

n(a) 
Ex-complexity cost absorption as a 
function of disposable income  

1
 

L(l,S) Crypto conversion function 
1

 

R(X) 

Rate of return on crypto as a function of 
the aggregate number of tokens 1

1
 

 

Table A2: Aggregate Economic Indicators in the Ergodic Equilibrium 

 
Fundamental 
description 

Notation Economy with 
crypto assets 

Economy without 
crypto assets 

 

Physical capital 
growth rate 

 1.094 1.036 

Normalized token 
price 

pn 0.071 - 

Consumption growth 
rate 

 1.081 1.005 

Token growth rate  0.032 - 

Correlation between 
physical and crypto 
wealth 

,  0.142 - 
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