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Issues in Adopting DSGE Models for Use in the Policy Process

Martin Fukǎc∗ and Adrian Pagan†

Abstract

Our discussion is structured by three concerns – model design, matching the data and
operational requirements. The paper begins with a general discussion of the structure of
dynamic stochastic general equilibrium (DSGE) models where we investigate issues like
(i) the type of restrictions being imposed by DSGE models upon system dynamics, (ii)
the implication these models would have for ”location parameters”, viz. growth rates,
and (iii) whether these models can track the long-run movements in variables as well as
matching dynamic adjustment. The paper further looks at the types of models that have
been constructed in central banks for macro policy analysis. We distinguish four gener-
ations of these and detail how the emerging current generation, which are often referred
to as DSGE models, differs from the previous generations. The last part of the paper is
devoted to a variety of topics involving estimation and evaluation of DSGE models.
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Nontechnical Summary

Macroeconometric modelling has seen a steady progression away from single equation data-
dominated approaches towards relatively complete, albeit small, systems. This trend has been
driven by the desire to have a strong economic perspective which links much more closely
with models developed by macro theorists. It does not seem likely that this movement will be
reversed. Indeed, a number of central banks have already adopted variants of 4G models as the
core model in their forecasting and policy assessment tasks.

It is notable that the more information that a central bank needs to provide in terms of forecasts
and explanations of policy decisions, the more there is a tendency to utilize 3G and 4G models.
Thus a central bank like the Reserve Bank of Australia, which has to publish little in the way of
forecasts, still works with a small 2G model – see Stone et al. (2005). Since it seems unlikely
that the future will see a decline in the amount of information and explanation that is demanded,
dynamic stochastic general equilibrium(DSGE) type models are almost certainly ”here to stay”.

Given this fact it is imperative that procedures be developed for evaluating these models as well
as the processes for constructing them, just as happened with the first and second generation of
models. Our feeling is that too little has been done in this regard. In particular, it is still very
hard to determine how well the models track the data. Estimation of the parameters has also
often been poorly described, although it has to be said that the recent enthusiasm for Bayesian
methods may well be going too far in the direction of formal estimation. Often this method
seems to conceal as much as it reveals. Its implementation is not entirely straightforward either.
Even apart from all the difficulties facing choice of priors, the need to construct posterior densi-
ties by simulation methods often requires a considerable amount of experimentation with tuning
parameters, such as the scaling factor in proposal densities in a Metropolis-Hastings algorithm.
Sometimes the answers seem to be quite sensitive to these choices. This means that replication
of Bayesian results is not straightforward and it is unclear whether what has been presented in
published studies is in fact a good representation of the ”true” posteriors. One needs to have
more scepticism about the Bayesian results that have been obtained.

Even if we accept that the models are performing adequately in their explanation of outcomes
we still have to recognize that there are many sources of information and some of these have
no obvious correspondence to variables in a DSGE model, e.g. confidence measures. Yet these
are rarely ignored when making policy decisions. How we adapt these models to make them
”policy friendly” is a fascinating question, but it is perhaps the biggest question of them all.
Good work has begun on this topic but more attention will need to be paid to it in the years to
come.
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1. Introduction

That the literature on DSGE models and the resources devoted to experimenting with them by
central banks has been rapidly growing can scarcely be disputed. Not only do we see many pa-
pers being produced with DSGEs by central bank researchers but we also see advertisements for
employment that specify this as an area of expertise. However, since ultimately most research
in central banks is designed to assist in making policy choices, it is natural to ask what issues
arise if DSGE models are to be given a greater role in this process, today and in the future.

The paper begins with a general discussion of the structure of DSGE models. It uses a stylized
representation but the points carry over to more complex models. In that section we investigate
a number of issues. One is the type of restrictions imposed by DSGE models upon system
dynamics. Another is the implication these models would have for ”location parameters”, viz.
growth rates. The latter investigation is important since it has often been said that it is the non-
constancy of such parameters that is the main source of forecast failure of macro-econometric
models Clements and Hendry (1999) – and having a model to interpret them is important when
it comes to discovering why they may have been non-constant. Finally we look at the question
of whether these models can track the long-run movements in variables as well as matching
dynamic adjustment, in particular, whether co-integration exists between variables and whether
it is of the right quantitative magnitude. These questions have, until recently, largely been
neglected with DSGE models, owing to a propensity to remove permanent components from
data with filters such as Hodrick-Prescott before engaging in the modelling.

Section 3 of the paper looks at the types of models that have been constructed in central banks
for macro policy analysis. We distinguish four generations of these and detail how the emerging
current generation, which are often referred to as DSGE models, differs from the previous
generations. In particular, since DSGE models have the fundamental feature of being driven by
shocks, we enquire into whether this feature is to be found in the latest (fourth) generation of
models, and in what sense.

Section 4 looks at a variety of topics involving estimation and evaluation of DSGE models.
We provide some general analysis of this and illustrate the arguments by reference to an open
economy model constructed by Lubik and Schorfheide (2005a) for the UK. Finally, the models
that we have been considering earlier are what are often referred to as ”core” or ”base” models,
and to make these usable for policy often requires some adjustments, either to match the data
or to handle forecasting adequately. Accordingly, section 5 considers a miscellany of issues
relating to the problems of making DSGE models operational.

Generally, our discussion is structured by three concerns – model design, matching the data and
operational requirements. Throughout we will distinguish between the role that DSGE models
have played as vehicles for experimenting with new ideas and the role that they might eventually
play as policy oriented models.
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2. Some Preliminaries

Consider the following stylized version of an economic system of the form

B0yt = B1yt−1 + Dxt + CEtyt+1 + Gut (2.1)

whereyt is a vector ofn × 1 variables,xt is a set of observable andut a set of unobservable
shocks.1 There arep observable and less than or equal ton unobservable shocks. If there were
more thann of the latter we would be looking at factor models and we sidestep that issue until
later. By observable we will mean that the shocks can be recovered from a statistical model. By
unobservable we will mainly mean that the shocks are defined by the economic model. Later,
however, we will divide unobservable shocks into those that are defined by the economic model
and those which are added simply to produce a better tracking of the data; the latter we will call
tracking shocks.

We will assume thatu(t) is I(0) while xt can be eitherI(1) or I(0). In most DSGE models the
permanent unobservable shock is technology and that appears in a production function such as

yt = αkt + (1− α)lt + u1t, (2.2)

so that, ifu1t is permanent, we could write this relation as

∆yt = α∆kt + (1− α)∆lt + e1t, (2.3)

where∆u1t = e1t. It is the fact thatu1t is a structural shock that enables us to eliminate it by
differencing of the variables in the structural relation. One would then just re-write the system
in (2.1) so as to reflect the fact that some relations involve differences. This will generally mean
that higher order lags appear in the system. If the structural shock appeared in an equation with
a forward looking expectation one would need to account for the fact that terms such asEt−1(yt)
appear in the system, but this doesn’t pose any great difficulties with the solution method we
outline below.

Let mp of thext andnp of theyt beI(1) processes i.e. have a permanent component. Assume
all theut areI(0). Then we can write

(Bp
0 −Bp

1 − Cp)yp
t −Dpxp

t ∼ I(0)

where the ”p” superscript corresponds to theI(1) variables. These are then the long-run rela-
tions between theI(1) variables. Since the number of co-integrating vectors will benp + mp−
mp = np, provided themp permanent variables inxt are not co-integrated, thenp × (np + mp)
matrix

[
Bp

0 −Bp
1 − Cp −Dp

]
must have ranknp, and can be written asαβ′, whereβ is a

set of co-integrating vectors. Thus the co-integrating vectors will potentially depend upon the
values ofBp

0 , B
p
1 , C

p, Dp. Looking a bit more closely at this we note that, if the equations had
the form (and assuming that allyt, xt areI(1)),

B0yt = B1yt−1 + B2∆yt−1 + Dxt + CEtyt+1 + Gut

then the long-run relations are unchanged. So the distinction that needs to be made is whether
or not all the parameters connected with dynamic terms (lagged values) enter into the long-run

1 GenerallyG is composed on known values due to the presence ofB0.
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relations. Parameters such asB0, B1, D andC enter the long-run butB2 do not. Accordingly,
while the dynamics may be better matched by the addition of terms like∆yt−1, replication of
the dynamics does not mean that the resulting model will yield data-compatible co-integrating
vectors and so it might track the long-run movements incorrectly.

To find a representation that eliminates the expectations we follow Binder and Pesaran (1995)
and writeξt = yt − Pyt−1, which is then substituted to obtain

B0(ξt + Pyt−1) = B1yt−1 + Dxt + CEt(ξt+1 + Pyt) + Gut

= B1yt−1 + Dxt + CEt(ξt+1 + P (ξt + Pyt−1)) + Gut

= B1yt−1 + Dxt + CEt(ξt+1) + CPξt + CP 2yt−1 + Gut,

so that we needB0P −B1 − CP 2 = 0 to eliminate theyt−1 term and to produce

B0ξt = CEt(ξt+1) + Dxt + CPξt + Gut.

This then implies

ξt = (B0 − CP )−1CEt(ξt+1) + (B0 − CP )−1Dxt + (B0 − CP )−1Gut

= Π1Etξt+1 + Π2xt + Π3ut

and the solution to the latter would be

ξt =
∑

Πj
1Et(Π2xt+j + Π3ut+j)

Thus the solution is of the form

yt = Pyt−1 +
∑

Πj
1(Π2Etxt+j + Π3Etut+j)

and we need to specify the nature ofxt andut. In the case where thext andut are AR(1)
processes we would get a Vector Autoregression with Exogenous Variables (VARX) system

yt = Pyt−1 + D0xt + G0ut. (2.4)

Now the economic theory here is a statement aboutP. D0 involves bothP and a statistical
process forxt, with the latter capable of being inferred from the data independently of the
model. This is not so forut as, although one might estimate a process for it, this can only be
done by estimating the complete model. It seems important then that one might ask the question
of how much of the explanation foryt comes from the exogenous (and unknown) assumption
thatut is anAR(1) process and how much comes from the economic theory i.e.P. This is not an
easy question to answer unambiguously sinceG0 is a function of bothP and its autoregressive
structure, but we can certainly perform some experiments to get an idea of how useful the model
is relative to the exogenous assumptions in matching the data.

A study of the nature ofP reveals an interesting feature. Since it is defined asP = (B0 −
CP )−1B1, it can have rank no greater than the rank ofB1. This is not a co-integration restriction
as we have assumed thatxt is I(0). Instead it is a common dynamic factor restriction as in Vahid
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and Engle (1993). Such restrictions can be very useful in forecasting if they are correct but also
very costly if they are not. Thus looking at the rank ofP seems a worthwhile task in all cases.
As we will see later there seem to be many DSGE models in whichP is rank deficient.

We now look at the issue of location parameter changes. We assume that∆xt = µx + vt so that
(2.4) can be written as

∆yt = (P − I)yt−1 + D0xt−1 + D0∆xt + G0ut

= Ψzt−1 + D0∆xt + G0ut

= α1β
′zt−1 + D0∆xt + G0ut (2.5)

wherezt =

[
yt

xt

]
, Ψ =

[
P − I D0

]
andα1 is the loading for∆yt on the ECM terms

ψt = β′zt. Hence, taking expectations,

µy = α1E(ψt−1) + D0µx.

In turn we could write the system of equations consisting of (2.5) and∆xt = µx + vt in the
form

∆zt = F1ψt−1 + F2µx + F3ζt

whereF1 =

(
α1

0

)
, F2 =

(
D0

I

)
, F3 =

(
G0 D0

I

)
, andζt =

(
ut

vt

)
. Thus

β′∆zt = β′F1ψt−1 + β′F2µx + β′F3ζt

ψt = (I + β′F1)ψt−1 + β′F2µx + β′F3ζt

⇒ E(ψt) = (I + β′F1)
−1β′F2µx

and so

µy = [α1(I + β′F1)
−1β′F2 + D0]µx

showing that the predicted mean for the growth rate inyt depends upon the mean of the growth
rate inxt, but also the complete set of parameters in the model. Shifts inµy, which will often
be the source of forecast failures, can occur because of changes either inµx or in some of the
model parameters.

Now, in many instances, including the example we look at later, the growth rates foryt andxt

are ”de-meaned” before estimation. This is not done with the model but using the actual growth
rates ofyt andxt. Hence the model may imply a growth rate foryt that is very different from
what is in the data and one should clearly check whether this is a problem with the model or
not. It is also the case, as Lubik (2005) observes, that the relation above implies restrictions that
can be used for estimating the model parameters. Note that, if there is no co-integration, then
α1 = 0, and so the prediction is thatµy = D0µx, which still depends on the model parameters.

The discussion above has proceeded as ifyt could be regarded as observed. But it is generally
a log deviation from some value that represents a point of attraction for that variable. When the
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system variables are stationary or have a deterministic growth path it is easy to relateyt to ob-
servables. Where the situation becomes more complex is if the observed data is an I(1) process
so thatyt is measured as the observed variable relative to itsI(1) component as predicted by
the model. Thus, ifY 0

t is the level of observed output, andAt is the level of technology, it is
conventional to formYt =

Y 0
t

At
i.e. yt = y0

t − at, where the lower case letters represent logs of
the capital letters. In this case another equation is needed relating the unobserved quantityyt to
the data, and that is generally provided by

∆y0
t = ∆yt + ∆at. (2.6)

Afterwards (2.6) combines with (2.4) when estimation is to be performed. Since these two sets
of equations constitute a state space form, Kalman filtering methods are normally employed to
extract estimates ofyt.

3. Base Policy Model Design

3.1 The First Three Generations of Models

Policy models can be regarded as evolving through four generations. The first generation was
largely driven by the IS/LM framework and involved writing down equations which described
the determinants of variables in the national accounting identity for GDP, e.g. investment and
consumption. Dynamics were introduced through distributed lag relations. Many issues relating
to model construction and evaluation were posed and solved by workers with these models.

Second generation models, such as the Canadian model RDX2 – Helliwell et al. (1971) – and
the MPS model2 at the Fed, introduced much stronger supply side features and also moved
towards deriving some of the relationships as the consequence of static optimization problems
solved by agents – in particular the consumption decision and factor choices often came from
this perspective. Dynamics were again introduced by modifying the static relationships with the
use of distributed lag ideas. But a new development was that the latter were often implemented
through an error correction form, the use of which had been popularized in the late 1970s by
Davidson et al. (1978), in which the static solution represented a target to which the decision
variable adjusted. Like the previous generation of models there was considerable diversity
within this class and it expanded over time. Often this diversity was the result of a continual
incorporation of new features, e.g. rational expectations were introduced into financial market
decisions. However, it was often the case that these new features were not easy to satisfactorily
reconcile with the existing large-scale models and this often led to a good deal of dissatisfaction
with the adapted versions – see the discussion in Coletti et al. (1996)

Third generation (3G) models responded to the latter difficulties, in particular the fact that these
models rarely converged to a steady state solution when simulated.3 Consequently, these models
became much smaller and emphasis was placed on the need to initiate their construction by
designing a steady state that they were to converge to (more often a steady state growth path, but
we will ignore that qualification), and to fully account for stock-flow interactions. In particular
stocks had to change in such a way as to eventually exhibit constant ratios to flow variables.

2 Gramlich (2004) observes that this was also called the Federal Reserve-MIT-Penn model and this is probably a
better name given the Fed’s role in its construction.
3 Gramlich comments on his work on the MPS model that ” ..the aspect of the model that still recalls frustration
was that whenever we ran dynamic full-model simulations, the simulations would blow up”.
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It was much easier to ensure that these characteristics held by setting up a model in which
there were well-defined optimization choices for households and firms, along with rules for
monetary and fiscal authorities, than trying to force them upon models in which these decisions
were largely ad-hoc. An early version of this class of models that was used for forecasting
and policy work was Murphy (1988), which was distinguished by the fact that it possessed a
well-defined steady state.4

Perhaps the most influential of the 3G models, however, was the QPM model of the Bank of
Canada. Basically this model was constructed in two stages. In the first stage optimization prob-
lems were posed and solved by agents, as detailed in Black et al. (1994). These Euler equations
were then combined with identities and solved for a steady state equilibrium between variables.
Thisbase modelincorporated some internal orintrinsic dynamicsowing to the presence of iden-
tities connecting stocks and flows. A second stage involved adapting the base model to the data
by the addition of external orextrinsic dynamics,as discussed in Colleti et al. (1996). In this
second stage a variety of methods were used to introduce dynamics. A popular procedure was
to set up a synthetic optimization problem in which agents attempted to close the gap between
the steady state solution for a variable and the observed value, but were constrained from doing
this instantaneously by there being some costs of adjustment. As Nickell (1985) showed, if the
costs were quadratic, then this formulation led to error correction models, and that equivalence
meant that the speed of adjustment could be estimated directly from applying these forms to the
data.

Thinking of the origin of an ECM which has been estimated from data as coming from some
optimization structure was probably useful in the context of explaining policy outcomes, but
wasn’t really needed if the objective was simply to fit the data closely.5 In most instances
the equilibrium solutions were ones that described relations that should hold between different
series rather than a computed set of observations on the steady state variables. These models
became dominant in the 1990s, being used at the Reserve Bank of New Zealand (FPS), the
Federal Reserve (FRBUS) and, more recently, the Bank of Japan (JEM). A distinctive feature of
the models is that it was necessary to provide a solution to the open-economy problem caused by
the fact that agents in a small open economy could borrow at a rate of interest that was fixed, and
so could finance consumption streams indefinitely – see Schmidt-Grohe and Uribe (2003) for a
discussion of methods for dealing with this issue. In practice, two strategies tended to be used
to rule out such behaviour. In the first the representative consumer of closed economy models
was replaced by agents with finite lives. This formulation could be shown to be equivalent to a
model with a representative consumer but one whose discount rate depended on the probability
of death – this is often known as the Blanchard-Yaari solution. A second approach was to have
the risk premium attached to foreign debt rising with the level of foreign borrowing, so that
eventually agents would not wish to borrow from foreign sources to finance consumption. The
ratio of foreign debt to GDP became a crucial element in the latter models and decision rules
had to be constructed to ensure that this prescribed ratio was achieved in steady state.

These models also allowed for the possibility that decisions about prices, consumption, invest-
ment etc. might be based upon expected future outcomes, rather than just those made about

4 The model was more fully described in Powel and Murphy (1995).
5 Although there is an isomorphism between ECMs and the strategy of maximizing some linear quadratic function
defined over the gap between steady state and actual values to which is added some quadratic adjustment costs, it
may be that, in practical applications, the optimization approach tends to rule out certain ECM models, e.g. when
fitted to data the fitted ECM model may suggest odd lag structures which are hard to rationalize from an economic
perspective, even if it is mathematically possible to do so.
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financial variables. In practice a combination of both backward and forward looking elements
were incorporated into decision rules with the greater weight being given to the ”backward ef-
fects”. Finally, in most instances the parameters of the base model were essentially calibrated
by utilizing information in ”great ratios”, in first moments, and from the attitudes of policy mak-
ers and advisers. Even the parameters determined in the second stage of model construction –
largely relating to dynamic adjustment – were influenced by attitudes of bank staff about the
likely dynamic effects of particular shocks, as well as the evidence on dynamic adjustments in
the data through past studies using (say) VARs.

3.2 Fourth Generation Models and Their Characteristics

Today we are seeing the emergence of a fourth generation (4G) of models. Some of the early
representatives are TOTEM (Bank of Canada, Binette et al. (2005)), MAS (the Modelling and
Simulation model of the Bank of Chile, Medina and Soto (2005)), GEM (the Global Economic
Model of the IMF, Laxton and Pesenti (2003)), BEQM (Bank of England Quarterly Model,
Harrison et al. 2004), NEMO (Norwegian Economic Model at the Bank of Norway, Brubakk
et al. (2005)) and The New Area Wide Model (NAWM) at the European Central Bank.

These new models have two striking general characteristics. First they feature considerable het-
erogeneity. Thus a variety of types of labour services are available, there are many intermediate
goods produced, and there may be a number of final goods produced, rather than the single good
of the previous generation of models. This heterogeneity is often associated with monopolistic
and monopsonistic behaviour rather than the competitive markets of the 3G models. Second, the
degree of intrinsic dynamics has been expanded a great deal, with a large number of constraints
upon agents when making decisions, including habit persistence in consumption and labour
choices, adjustment costs in investment and labour, capital utilization variations, and wages and
prices being adjusted according to various staggered price setting and contractual arrangements.
Thus the base model now has much more of the dynamic structure coming from optimal de-
cisions than was the case in the previous generation of models. 4G models do maintain some
of the 3G model characteristics though. The models are still relatively small and feature both
forward looking and backward looking behaviour. They also still have some features that stem
from knowledge about what is needed to fit the data. Prominent among the latter is the distinc-
tion between ”spenders” and ”savers”. The latter make optimal decisions about consumption,
taking into account that there is some habit persistence built into their utility functions. The for-
mer, previously often described as ”liquidity constrained consumers”, have their consumption
determined by current incomes, and their ability to borrow on capital markets is constrained.

It is worth dwelling on the heterogeneity feature. TOTEM is selected as a representative of what
is being done in these models. Here there is a continuum of domestic intermediate goods being
produced by many firms using a capital/labour composite and a commodity good. Final goods
then combine together with domestic goods and imported goods. Different firms produce these
differentiated goods and so they hire different types of labour. Imports of the different goods
are essentially done by an aggregator who combines these and sells them on to firms. This
large degree of heterogeneity might seem to pose difficulties for a macro model, where only
aggregated observations are available, but the functional forms describing how the items are
combined together, generally CES, ensure that this heterogeneity produces an aggregate de-
mand function for the final good, and the only way in which heterogeneity appears is that a
parameter describes the distribution of the different commodities, labour types etc. Sometimes
this parameter is treated as evolving stochastically over time, and so is not directly observed,
although micro-economic evidence is normally invoked to describe its likely variation. This
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heterogeneity is important since it enables monopolistic pricing, and therefore different price
adjustment schemes for different firms can be imposed. The micro-macro aggregation proce-
dure is rather clever, and provides an interpretation to some of the aggregate demand functions,
but how important it will be to policy discussion remains to be seen. Estimation of parameters
in these models still seems to largely involve the calibration strategy that emerged in the third
generation models, although often it is projected that there will be more systematic estimation
in the future, particularly from a Bayesian perspective.

3.3 Are Fourth Generation Models DSGE Models?

On the surface fourth generation models certainly seem like DSGE models. Euler equations de-
scribe agents’ decisions, there are extensive cost of adjustment schemes to introduce dynamics,
forward looking expectations are standard etc. Many of the shocks that are standard in DSGE
models also appear in them. But there seems to be a difference over how observable and un-
observable shocks are treated. This difference really traces back to two purposes for shocks –
they might beexplanatoryor exploratory. In DSGE models they serve both purposes, i.e. they
tell one about the model through impulse responses but are also integral to explaining the data.
That is true of observable shocks in 4G models as well, but not for unobservable ones. In exist-
ing uses of these models shocks such as technology seem to be treated as simply deterministic
trends when it comes to assessing whether these models can match the data and are therefore
not regarded as being stochastic. Thus Amano et al. (2002, p 11, footnote 11) say when evalu-
ating QPM that ”An obvious omission is a productivity shock. In previous work, however, we
found, given the current structure and calibration of the shocks, only a small effect arising from
productivity shocks”. When the models are made operational it may be that a non-deterministic
path for unobserved shocks is imposed based on views about its likely evolution, but it is un-
likely to be of the simple type often used in DSGE models, i.e. autoregressive structures. This
seems a substantial difference to DSGE models. It has the advantage that the models can be
solved under the assumption of perfect foresight for observable shocks whereas unobservable
shocks can be generated with some statistical model.

There are some exceptions to this blanket statement. TOTEM treats shocks to the inflation
target as unobserved and composed of a random walk plus a transitory component and agents
need to extract an estimate of the target via Kalman filtering. This will generally mean that they
use weighted moving averages of observable variables such as inflation in place of the target.
When made operational, however, it would seem that a fixed target was assumed.

A further difficulty with unobservable shocks is that they are defined by the model. A similar
situation occurs in a regression context and, although the US approach to econometrics has
largely been to treat the error in the regression as a shock with specified properties, there has
always been an alternative treatment, particularly in the UK, of regarding this error as a residual,
since it is what the model cannot explain. In the latter interpretation there is a serious question
about whether (say) a ”monetary policy shock” really is that, rather than simply a reflection of
the fact that the economic model we are working with is not rich enough to explain observed
interest rate decisions. In this latter perspective the interpretation of residuals from the interest
rate equation in VAR models as policy shocks often seems misguided.
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4. Matching the Data

It is virtually impossible to think that a model which is to be used for policy analysis would not
be influenced by data. In particular the need to assign values to the parameters of such models
raises the issues of how one does that and how one learns about the accuracy of such choices as
well as whether the quantified model is a good representation of the data.

The first item that needs to be addressed is whether it is possible to learn about the values of
the parameters of these models. This literature generally goes under the heading of ”identifica-
tion”. In extreme cases the model may be unidentified and so one can learn nothing about the
parameter values from the data. In most cases however there is ”weak identification” in which
the data is fairly uninformative about the parameter value and it is also difficult to produce a
precise measure of how uninformative it is.

If one thinks that one can obtain some information from the data there are many estimation
methods whereby one does this. Estimation approaches involve either formal or informal uses
of the data. The latter are often termed ”calibration” and often constitute a wide range of
procedures – matching of moments, use of opinions and intuition, evidence from previous micro
and macroeconometric work etc. Informal methods are rarely uninformed by data. There is a
case that they can be highly effective – they can often provide a filter against errors in data and
can combine together quite a lot of information in a useful way. The issue shouldn’t really be
whether informal methods are ”bad” estimation methods, but rather whether one performs an
adequate evaluation of any model whose parameters have been quantified by such an approach.
Indeed, as we will see later, formal methods can also have difficulties and this raises the question
of whether they are really superior to informal ones. It might be thought that formal methods
have the advantage of replicability, but, as anyone who has done empirical work knows, this is
often illusory.

In the sections below we look at issues of identification in DSGE models, the methods proposed
to estimate their parameters and measure the degree of uncertainty about their likely values, and,
finally, procedures for assessing how well these models match the data.

4.1 Where does Identification Come From?

Let the parameters in the base model beθ and the unknown parameters inB0, B1, D,C, and
G be η. SinceG = I is most common (thus making the standard deviations of the shocks
unknown) we will impose that restriction and also ignore the fact that often the shocksη are
restricted to be uncorrelated, an assertion that can provide identifying information. It is worth
looking at the identification issue in two stages. First, one could ask whether it is possible to
recoverθ if η is known? If not be then we must have a failure of identification since, when
there is identification, Kodde et al. (1990) show that (asymptotically) the MLE ofθ can be
recovered by utilizing estimates ofη. Second, one might ask whether it is possible to estimate
η without using any of the restrictions that are imposed between theη due to the fact that
dim(θ) < dim(η).

To investigate the problems in estimatingη, for convenience (and because many DSGE models
make this assumption), let us assume that bothxt andut are VAR(1)’s withxt = Φxxt−1 + vt
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andut = Φuut−1 + et.Then

Et(yt+1) = Pyt + D0Etxt+1 + G0Etut+1

= Pyt + D0Φxxt + G0Φuut

= Pyt + D0Φxxt + G0ΦuG
+
0 (yt − Pyt−1 −D0xt)

= z′tδ

wherezt =
[

yt yt−1 xt

]
. Hence the Euler equations can be re-written as

B0yt = B1yt−1 + Dxt + Cz′tδ + Gut,

It’s clear that to estimate the parameters of these equations we will need to have instruments for
theyt that appear on both the LHS and the RHS of the equations. The latter have coefficients
from B0 attached to them (once we normalize on one of theyt for the LHS). The former stem
from the fact thatyt also appears inz′tδ, so that instruments are needed for those terms as well.
We will assume that we knowδ since it can always be estimated by regressingyt+1 against
yt, yt−1 andxt.

6

The New Keynesian Policy Model (NKPM) is a good example of the issues that arise in at-
tempting to estimateη. In its simplest form it has a Phillips curve, an IS curve and an interest
rate rule

πt = η1πt−1 + η2Et(πt+1) + η3ξt + uSt (4.7)

ξt = η4ξt−1 + η5Et(ξt+1) + η6(rt − Et(πt+1)) + uDt (4.8)

rt = η7rt−1 + η8ξt + η9πt + uIt, (4.9)

whereπt is inflation, ξt is demand andrt is an interest rate. We might haveEt(ξt+1) and
Et(πt+1) in place of the current values in the policy rule without changing any of the discussion.
There are no observable shocks in this system.

Consider the estimation of the parameters of this system assuming there is no serial correlation
in the shocks. First, it is clear that the rank ofP in (2.4) is likely to be 3 and sort−1, ξt−1 andπt−1

all affect the three variables. Hence three instruments are available to estimate each equation.
One of these variables appears lagged in each equation but there are only ever two variables that
instruments are needed for in each equation, so that potentially all of theηj should be capable
of being estimated without using information about the covariance matrix of the errors.

Of course there are extra instruments that are not used – namely the residuals from the first
equation when estimating the second equation, and the residuals from both the first and sec-
ond equations when estimating the third. These residuals become instruments owing to the
assumption that the shocks are uncorrelated with one another, but this is not due to any eco-
nomic analysis. As the size of DSGE models rises towards those of 4G models it must become
increasingly difficult to rationalize zero correlation between shocks given names such as ”mark
ups” and ”utilization”. Against this tendency is the fact that it seems virtually impossible for the
assumption to be correct if one only had a two variable system involving demand and supply
shocks. The possibility that the assumption is incorrect would mean that basic IV estimation
of the NKPM could be more reliable than MLE, as it uses only exclusion restrictions as in

6 This assumes shocks are white noise. If they exhibit serial correlation a different estimator is needed.
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standard simultaneous equation estimation, whereas MLE generally imposes the uncorrelated
shocks assumption.

Now suppose that the NKPM only had forward looking variables, i.e.η1 = 0, η4 = 0, a situation
sometimes found in theoretical models. ThenP has rank one and onlyrt−1 is available as an
instrument. Thus in this case it is impossible to estimate all of the remainingηj.

7 Now what
happens if there is serial correlation in the shocks of the first two equations of the NKPM (a
very common assumption)? The expectations are constructed differently but instruments are
still needed for them. However now we can transform the equation to eliminate the serial
correlation, e.g. the inflation equation with an AR(1) for its shock of the form

uSt = ρSuSt−1 + eSt

would become

πt = ρSπt−1 + η2z
′
tδ1 − η2ρSz′t−1δ1

η3ξt − η3ρSξt−1 + eSt.

Since the same transformation applies to the first two equations this clearly means that there will
now be three instruments available to estimate this equation, viz.ξt−1, rt−1, andπt−1. Hence
the assumption that the shocks have an AR structure generates enough instruments for the esti-
mation ofρ, η2 andη3 in the inflation equation, and this is also true of the remaining equations.
Of course this does not come from the structure of the model but is simply a consequence of an
extraneous assumption about shocks.

To take another example that is in the literature, Canova and Sala (2005) look at the following
version of the NKPM

ξt =
h

1 + h
ξt−1 +

1

1 + h
Et(ξt+1) +

1

ϕ
(rt − Et(πt+1)) + v1t

πt =
ω

1 + ωβ
πt−1 +

β

1 + ωβ
Et(πt+1) +

(ϕ + υ)(1− ζβ)(1− ζ)

(1 + βω)ζ
ξt + v2t

rt = φrrt−1 + (1− φr)(φππt−1 + φyξt−1) + v3t

The coefficients of the LHS variables will be numberedηj, j = 1, ..., 9. Now suppose that the
vjt were white noise. Then we can estimate all of theηj as there are three instrumentsπt−1, it−1

andξt−1 – two of these never appear as regressors in each of the first two equations, and only
two endogenous variables appear on the RHS of these equations. However, even thoughηj are
identified, it is immediately obvious that this is not true ofθ, sinceη6 = (ϕ+υ)(1−ζβ)(1−ζ)

(1+βω)ζ
is the

only ηj that involves the two parametersν andζ.

7 This is true even when the restrictions coming from orthogonal shocks are employed since the number of moment
conditions available from usingrt−1 as an instrument is three while the number from the covariance matrix is six,
giving nine moment conditions. But there are ten parameters to be estimated – seven of these areηj and three are
the standard deviations of the shocks. One needs to impose an extra restriction to get identification and often this is
η5 = 1. General analyses of identification in the NKPM are available in Mavroeidis (2004) and Nason and Smith
(2005).
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Now in Canova and Salav1t andv2t are AR(1) processes and, as we might expect from the
discussion above, this aids identification a great deal. Elimination of the serial correlation in the
second equation introduces termsρ(ϕ+υ)(1−ζβ)(1−ζ)

(1+βω)ζ
ξt−1 and ρω

1+ωβ
πt−1 and creates two extraηj to

use to estimate the three parametersρ, ν andζ. Thus identification is once again being achieved
by the assumption of the shocks being AR processes, which is not part of the economic model.
Of course, as in all the discussion here, the parameters may be very weakly identified and, from
Canova and Sala’s numerical results, that seems very likely, but it is worth understanding when
the model would be exactly unidentified. Notice that one can also derive their result that a lack
of identification may depend on whether a systems perspective is taken, simply by looking at
how many instruments are available if only various single equations are used in estimation.

As mentioned previously other restrictions may be imposed upon theηj either by theoretical
considerations or as an outcome of the chosen functional form. Thus, as we saw in (2.3),
the assumption that the technology shock is permanent and that the production function was
Cobb-Douglas meant that an instrument was needed for∆kt − ∆lt in order to estimate the
share parameterα. This is an example of a restriction between theηj. Note that in one of the
examples in Canova and Sala there is no labour so they effectively need to find an instrument
for ∆kt. If ∆kt is close to white noise then there will be no good instruments and so it will be
very hard to estimateα (a conclusion they reach from their simulations).8

4.2 Estimation Techniques

There are various formal methods of estimation, differentiated largely by how much credence is
to be placed upon the complete DSGE model. Single equation method of moments estimators
like GMM, which work off the moments coming from Euler equations, utilize the complete
system only to the extent of suggesting what would be reasonable instruments. Maximum like-
lihood methods, which maximize a log likelihood,L(θ), with respect to the model parameters
θ, try to improve on the precision of GMM by using the precise structure of the DSGE model.
As has been known for a long time, such efficiency can come at the expense of bias and incon-
sistency of estimators, unless the complete system is an adequate representation of the data. As
Johansen (2005) has pointed out, this is a price of MLE, and it should not be assumed that the
DSGE model has that property. Again this calls for a proper examination of the extent to which
the DSGE model is capable of capturing the main characteristics of the data.

Bayesian methods have also become increasingly popular. To get point estimates ofθ compa-
rable to MLE, one can maximizeL(θ) + ln p(θ), wherep(θ) is the prior onθ. The resulting
estimate ofθ is often referred to as the mode of the posterior. An advantage of the Bayesian
method is that there is often information about the range of possible values forθ, either from
constraints such as the need to have a steady state or from past knowledge that has accumulated
among researchers. Imposing this information upon the MLE is rarely easy. It can be done
by penalty functions, but often these make estimation quite difficult. Adding onln p(θ) to the
log likelihood generally means that the function being maximized is quite smooth inθ, and so
estimation becomes much easier. We think that this advantage has been borne out in practice;
the number of parameters being estimated in DSGE models like Smets and Wouters (2003) is
quite large, and one suspects that MLE estimation would be quite difficult.

8 The interaction between the nature of data and the ability to estimate model parameters was also seen in Gregory
et al. (1993) where it was shown that, in a discounted quadratic objective model, the discount factor could not be
identified if the forcing variables wereI(1).
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There is, however, a cost to Bayesian methods. Unlike penalty functions the use of a prior
changes the shape of the function being optimized. IfL(θ) is flat in θ then the choice of prior
will become very important in determining the estimated parameter values. In DSGE models
this seems likely to become an issue. We will illustrate this argument later in an empirical
example where what would seem to be a perfectly satisfactory estimate of a parameter by a
consistent estimator (OLS) is negative, but the Bayesian estimator is strongly positive, since the
prior was set up so that a negative value could not be found.9

Another reason why one suspects there may be difficulties in estimating DSGE models is that
too much is being asked of the data. The context in which we make this remark is the fact that
many DSGE models are estimated treating variables such as the capital stock as unobserved, i.e.
there are more unobserved variables in the model than observed variables, so the unobserved
variables must be concentrated out of the joint density of the model variables to get the likeli-
hood. This is generally done using the Kalman filter. But that filter does require normality of
observations and, given that series like interest rates are rarely normal, this seems immediately
to say that the DSGE model likelihood is incorrect. Even if we ignore that problem, and as-
sume that the Kalman filter is an appropriate way of proceeding, it has to be recognized that the
presence of more unobserved than observed variables puts great stress upon data sets when it
comes to using them to find estimates of the parameters generating the unobservable variables.
Strong assumptions may need to be made about variances in order to achieve identification of
these parameters, something that does not seem to be appreciated by many of those applying
the methods. For example it is not enough to follow Smets and Wouters (2003, p1140) who say
” Identification is achieved by assuming that four of the ten shocks follow a white noise pro-
cess. This allows us to distinguish those shocks from the persistent ”technology and preference”
shocks and the inflation objective shock”.

To see the problem that arises with having an excess of unobservables consider the simplest
case where we have one observed variableyt but two unobserved componentsy1t andy2t. One
of these components (y1t) follows an AR(1) with parameterρ1 and innovation varianceσ2

1, and
the other is white noise (ρ2 = 0) with varianceσ2

2. Then we would have

(1− ρ1L)yt = (1− ρ1L)y1t + (1− ρ1L)y2t

and it is clear that, asσ
2
2

σ2
1

becomes large, it becomes impossible to identifyρ1. In this case the
likelihood is flat inρ1, and any prior placed onρ1 will effectively determine the value ofρ1 that
results. To avoid this situation a prior would need to be placed on the relative variance and not
just the values ofρ1 andρ2 as Smets and Wouters argue. To illustrate this we simulated some
data from the set up above and then estimatedρ1 with a beta prior centred at different values.
The true value ofρ1 is .3 and the table below shows the posterior mode for different values of
σ2
2

σ2
1
. It is clear that recovering the true value ofρ1 is extremely difficult if the type of prior used

in many DSGE models is adopted.

9 The mode of the posterior is generally used to begin a process of simulating realizations from the posterior density
for θ. Often the method used is that set out in Schforheide (2004). One wonders how useful the posteriors being
reported are, since being able to characterize a high dimensional density accurately requires huge numbers of
realizations from it – the empty-space phenomenon. To illustrate this consider estimating the height at the origin
of a multi-dimensional density. Table 4.2 of Silverman (1986) vividly illustrates the fact that, when the density
is N(0, Id), a 90% accuracy for the estimate requires a sample size of4 whend = 1 but one of842, 000 when
d = 10. There are often far more parameters in DSGE models than ten.
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Table 4.1: An example of a too-many-unobservables model estimation. Estimates ofρ1 and
90% confidence interval

Trueσ2
2/σ

2
1

Prior 1 2 5
ρ1 = 0.85 0.67 0.71 0.80

[0.49-0.84] [0.53-0.89] [0.64-0.94]
ρ1 = 0.50 0.46 0.48 0.49

[0.32-0.60] [0.31-0.62] [0.35-0.65]
ρ1 = 0.30 0.28 0.28 0.29

[0.12-0.41] [0.13-0.46] [0.12-0.44]

Note: We use a beta prior onρ1, with a standard error 0.1. The true value isρ1 = 0.3. Forσ1

andσ2 we use an inverse gamma with a mean 1 and standard error 4 as a prior.

It seems reasonable that one might want to use a variety of estimators rather than a sin-
gle one. Sometimes the GMM estimator seems to be regarded as inferior, e.g. Lubik and
Schorfheide (2005) say about GMM estimation of Euler equations ”While potentially robust to
mis-specification, this approach suffers from subtle identification problems that can often lead
to implausible estimates. Full-information based methods, on the other hand, use the optimal
set of instruments embedded in the model’s cross-equation restrictions and make identification
problems transparent”. It is unclear what is meant by the last statement but the first part of the
argument is misleading. FIML does indeed use an optimal choice of instruments but GMM
can also do this, e.g. in the old simultaneous equations literature Brundy and Jorgenson (1971)
suggested the FIVE and LIVE estimators. These estimators used as instruments the predictions
from the derived reduced form after imposing either all the restrictions on it (FIVE) or the
sub-set of them stemming from the equation being estimated as instruments (since any set of
weights attached to the instruments produce consistent estimators we are free to choose these
weights however we wish) and Fuhrer and Olivei (2004) essentially applied these estimators
when estimating NKPM systems. Because MLE imposes restrictions on the parametersθ it
is sensitive to mis-specification and it is on this dimension, rather than in the choice of in-
struments, that it can be inferior to single-equation GMM. It would seem to be a good idea to
always estimate the Euler equations with GMM using instruments constructed as predictions
from the complete system estimated by Bayesian or ML estimators, since then we have held
the instruments constant and any differences are due to the cross-equation restrictions. If the
differences are very pronounced one might be concerned about the possibility that specification
errors have affected the ML and Bayesian estimators. A Hausman test might be constructed
which compares the MLE and single-equation GMM estimates. It possibly should be said that
it is not always easy to apply GMM as there may be too many unobserved variables in the Euler
equations to make for easy estimation – this occurs in the system we analyse later.
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4.3 Evaluation Issues

There is an old literature on the evaluation of DSGE models and an emerging literature on the
evaluation of models that are closer to policy models in size and complexity. Two recent studies
stand out – an evaluation of QPM by Amano et al (2002) and an analysis of the Smets and
Wouters model by del Negro et al. (2004). The former is a very comprehensive examination
of the QPM model and its characteristics in relation to the data, whereas the latter is more
concerned with the development of some new evaluation techniques, although it also makes
some points that are relevant for the analysis of any 4G model. In the documentation of BEQM
– Harrison et al. (2005) – there is also some mention of the ability of the model to match the
data, but this is a little sketchy.

Evaluation really has two dimensions to it. One is largely focussed upon the operating charac-
teristics of the model and whether these are ”sensible”. The other is more about the ability of the
model to match the data along a variety of dimensions. The two themes are not really indepen-
dent but it is useful to make the distinction. Thus it might be that, while a model could produce
reasonable impulse responses, it may not produce a close match to the data, and conversely.

4.3.1 Operating Features
Standard questions that are often asked about the operating features of the model are whether the
impulse responses to selected shocks are reasonable and what the relative importance of various
shocks are to the explanation of (say) output growth. Although the latter is often answered
by recourse to variance decompositions perhaps a better question to ask is how important the
assumptions made about the dynamics of shocks are to the solutions, as it seems crucial to
know how much of the operating characteristics and fit to data comes from the economics and
how much from exogenous assumptions. This concern stems back at least to Cogley and Nason
(1993), who argued that standard RBC models produced weak dynamics if shocks were not
highly serially correlated. In terms of (2.4) one can envisage computing the one-step ahead
forecast foryt, ŷt, as

ŷt = Pyt−1 + D0xt + G+
0 Φ(yt−1 −D0xt−1), (4.10)

and seeing the effect asΦ is varied. An alternative would be to re-estimateP, D0 etc for the
different values ofΦ. We use the first of these in the later empirical work, i.e. we setΦ = 0
since it seems to more directly answer the question we are asking.

The appropriate strategy for assessing operating characteristics depends on whether the model
parameters have been formally or informally quantified. If done informally researchers such
as Amano et al. (2002) and Canova (1994) have asked the question of whether there is a set of
such parameters that would be capable of generating some of the outcomes seen in the data, e.g.
ratiosφ such as (say) the consumption-income ratio. Such a ratio would be a function of the
model parametersθ. The existing value used forθ in the model,θ∗, is then taken as one element
in a set and a search is conducted over the set to see what sort of variation would occur in the
resulting value ofφ. If it is hard to reproduce the value ofφ observed in the data,̂φ, then the
model might be regarded as suspect. In this approach the estimate ofθ from the data is held
fixed and the possible values of model parameters are varied to trace out a range of values of
φ. An efficient way of doing this is a pseudo-Bayesian approach in which the range forθ is
described by a multivariate density, and then the induced density forφ can be determined. If
the observed valuêφ lies too far in the tails of the density of the induced value ofφ, one would
regard the model as inadequately explaining the feature summarized byφ.



18 Martin Fukǎc, Adrian Pagan

The second approach treats the parameter values entered into the model,θ∗, as constant and
asks whether the estimatêφ is close to the valueφ∗ = φ(θ∗) implied by the model. This is
simply an encompassing test of the hypothesis thatφ = φ∗. One needs to make these tests
robust as one does not know whether the model is the DGP. If the value ofθ used in the model
has been estimated, but not in a way that can be easily replicated, these tests can be regarded as
(asymptotically) conservative tests of the hypothesis, i.e. if the hypothesis is rejected it would
be rejected even more strongly if one allowed for that estimation error – see Breunig et al.
(2003) for this use.

4.3.2 How Well Does the Model Track the Data?
Although the procedures just discussed can be thought of as performing some data matching
the focus is often upon a limited range of items such as great ratios. It seems desirable to do
more than that and, in particular, to emphasize system properties.

In the first and second generation of models a primary way of assessing the quality of models
was via historical simulation of them using a set of observed values of exogenous variables.
The maxim among the proprietors of such models was ”simulate early and simulate often”, as
that enabled the system properties to be viewed and was a complement to single equation tests
of adequacy such as serial correlation. It seems important that we see such model tracking
exercises for DSGE models, as the plots of the paths are often very revealing about model
performance, far more than might be found from just an examination of a few serial correlation
coefficients and bivariate correlations, which have been the standard way of looking at DSGE
output to date.10 It is not that one should avoid computing moments for comparison, but it seems
to have been overdone, in comparison to tests that focus more on the uses of these models such
as forecasting (which is effectively what the tracking exercise is about).

Now there is a problem with producing such exercises for DSGE models. Lety∗t be the implied
value ofyt produced by the DSGE and letyD

t be realizations ofyt. In (4.10) we effectively
usedyD

t−1 in place ofyt−1 to generate the forecasts, i.e. we identifiedy∗t asyD
t , in which case

the model perfectly reproduces the data through the values given to the shocks. Thus there is
no residual. But, if we solve for the moments ofy∗t implied by the model, these may not match
up those from the data, and so the assumptiony∗t−1 = yD

t−1 is implausible. Some way must
therefore be found that will allow for a residual or a wedge betweeny∗t andyD

t . Altug (1989)
pioneered one way of doing this by writingyt = y∗t +ηt and then assuming that theηt were i.i.d.
and uncorrelated with model shocks. One can then estimate thevar(ηt) and extract estimates
of y∗t using Kalman filtering methods. Ireland (2004) has a generalization of this whereηt

can be serially correlated. But there seems no reason to think that these residuals should be
uncorrelated with model shocks and it is easy to construct cases where they would not be.

An alternative approach was developed by Watson (1993), in which he asked what was the
smallestηt that one needed to reconcile the DSGE characteristics with the same characteristics
in the data. Thus whenyt is a single variable and bothy∗t andyt arei.i.d. one can show that the
smallest variance ofηt will be (var(y∗t ) − var(yt))

2, and the values ofy∗t which are consistent

with this minimal variance will be equal to
[

var(y∗t )

var(yt)

]1/2

.

10 One problem with such moment comparisons is when parameters are estimated from the data and these involve
moments of shocks. In a regression model this would mean that the variance of the regression error (shock) can be
chosen to perfectly match the variance of the variable being explained. Thus the comparison of moments is often
best when parameters have not been estimated.
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If the data and model are noti.i.d. then one needs to somehow solve the same problem allowing
for the serial correlation. Watson’s suggestion was to find the shock that would minimize the
gap between the spectra ofy∗t andyt. He then showed that the value ofy∗t could be reconstructed
asy∗t = Ξ(L)yt, whereΞ(L) has both backward and forward elements. This creates a difficulty
since, if one was asking what the forecast implications of the DSGE model were, one would
want to only allow backward lags. Nevertheless, it is clear that it will be useful to look at the
y∗t constructed as in Watson and to then replaceyt−1 with y∗t−1 in (4.10). In many ways the
problem is the same as dynamic factor extraction when one wishes to only have a one-sided
window. Clearly more work needs to be done on this issue.

Watson illustrates the technique with a basic RBC model. Oddly enough it does not seem
to have been used much, although it is obviously a very appealing way of getting some feel
for how well the DSGE model is performing. It may also be worth attempting to develop a
method that defines the addition of a vector of shock that has some fixed properties, e.g. it is a
VAR(1) as in Ireland, and which minimizes the gap between a finite number of model and data
autocovariances rather then the spectra.

4.3.3 How Well Does the Model Match Selected Characteristics of the Data
We might think of matching tests as answering four questions:

1. Do variables in the model that have deterministic trends co-trend? Essentially this would
ask whether the mean responses in the growth rate for deterministically trending endoge-
nous variables agree with the values projected by using the long-run growth of the deter-
ministically trending exogenous variables.

2. Do variables that are I(1) co-integrate and, if so, are the co-integrating vectors those im-
plied by the model? This is an important question since a failure will mean that forecasts
made with the model are being attracted to the wrong point as the horizon lengthens.
Moreover, since the co-integrating vectors depend on many parameters of the model, the
dynamic responses can be affected by incorrect information on this aspect.

3. Are the dynamic responses consistent with the data?

4. Is the covariance matrix of the implied errors in reduced form representations of the
DSGE model consistent with that in the data?

We discuss each of these in turn.

Co-Trending Co-trending is something that can be checked if the model that has been quan-
tified actually produces an estimate of (say) GDP growth. Often, however, data is de-meaned,
so that all growth variables have zero mean by construction, meaning that there is no specific
information in the model about what the means are. To give an example of this that occurs
quite a bit, output is scaled by the level of technology, so that the actual growth rate in output is
the sum of the labour force growth rate plus the rate of technology change. If actual growth is
de-meaned then this means that the technology process would be effectively specified as having
a zero mean growth. In this case there is no prediction of the model about the growth rate in
output. However, we could invert the equation and ask what growth rate in technology would be
needed to produce the observed growth rate in output, and we use this approach in our example
later.
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Integration and Co-integration To date DSGE modelling has not dealt very well with
the fact that many macroeconomic variables are integrated, i.e. possess stochastic permanent
stochastic components. Often these have been removed by filters such as HP. But this makes
little sense since it is reducing the role of technology shocks a great deal. Co-integration is
rarely tested. In complex models the co-integrating vectors are often quite complex but can be
worked out, e.g. see a simple example in Kapetanios et al. (2005). The standard approach in
many DSGE models of having technology as the sole I(1) unobserved shock means that there
should be many co-integrating vectors. In practice it is hard to find more than a few among
most macroeconomic variables and the only way that the DSGE model and data would then
be reconciled is for the shocks in the DSGE model to be I(1), i.e. if they are treated as AR(1)
processes the AR parameter will be estimated as very close to unity. This is a very common
outcome when these models are estimated, e.g. the Euro-Area model estimated in Adolfson
et al. (2005) has a unit root imposed on domestic technology shocks but four other shocks have
estimated AR parameters greater than .983. It is hard to believe that these are not unit root
processes but, with Bayesian methods that effectively impose a prior that says there is a zero
probability of getting a unit root in these shocks, one would never observe that.

Co-integration also implies that the appropriate model for comparisons with the data is a VECM
and not a VAR, and a failure to recognize this fact can result in some inaccuracies – a point
shown very well in del Negro et al. (2004). If one is to take co-integration issues seriously how-
ever, a problem that arises in any comparisons of the model with the data is what co-integrating
vectors to use when fitting the VECM to the data. Del Negro et al. utilize the co-integrating
vectors implied by the model but that seems to load the comparison in favour of the model in
the event that the co-integrating vectors do not agree with those of the data.11 Effectively, this
problem emphasizes that a test of whether the co-integrating vectors are compatible with the
data should precede any investigation of dynamics through fitted VECMs.

As we have just said we could compare the VECMs implied by the model and data. This does
provide a test of dynamic structure but, in the event that it fails, may not be very informative.
Often a comparison of estimated and model-implied impulse responses can provide a more
useful packaging of dynamic information. This comparison can only rarely be done with the
impulse responses to economic shocks since it is hard to identify these shocks from a VECM
without using the model. There are some exceptions to this. A technology shock implied by
the data can generally be isolated by simply using long-run restrictions, and so its impulse
response function can be found without imposing precise model information, but mostly one
cannot extract unknown economic shocks without the model restrictions.

Dynamic Response Comparisons One can formally test whether the model VECM matches
the data using standard testing methods. Of course such tests are either accept/reject or, in
Bayesian terms, low or high probability events. Del Negro et al. (2004) suggest that one should
think about the two models as being polar cases and to then connect the two up with a parameter
λ that varies from zero to infinity, such that at one extreme one gets the model and, at the other,
the data. Of course one needs some criterion to determine what the value ofλ is. If one just
used the likelihood one would always take that value ofλ which maximized the likelihood,
i.e. the VECM based on the data. So they place a prior uponλ which ensures that there is a
trade-off between the data and the prior. Obviously the answer one gets is crucially dependent
on the prior chosen, and it was constructed in order to get the model and data VECMs to be at

11 In fact they eventually use a VAR rather than a VECM because the model-implied co-integrating restrictions
seem incorrect based on graphical evidence. This seems an odd response unless there really is no co-integration
(rather than just a failure of the model-implied vectors to produce co-integration) and that was never demonstrated.
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opposite ends of the range ofλ. In some ways the method is reminiscent of ridge regression, in
which OLS is at one end of the ridge parameter range, and values of zero for the parameters at
the other. In any case if one follows the method one would end up with a value ofλ that can be
used to determine what value should be placed on the parameters of the VECM. In their work,
using an intermediate value ofλ seemed to produce better forecasts.

Matching Covariances of VAR Residuals The DSGE model also makes predictions about
the covariance matrix of the errors in the VECM. Specifically these would beG0var(ut)G

′
0.

Becausevar(ut) is generally assumed to be diagonal there are strong second moment restric-
tions imposed on the VECM. Again, these have rarely been tested in the literature. A useful
way of viewing the compatibility of the assumptions about model shocks with the data is to
form G−1

0 VD(G′
0)
−1, whereVD is the estimated covariance matrix of the residuals from fitting a

VECM to the data. This is an estimate of what the covariance matrix of the shocks would have
to be if one was to maintain that the initial impulse response was that implied by the model
(G0). This is informative in its own right but it also tells us whether it would be reasonable to
proceed to estimate the DSGE model under the assumption of uncorrelated shocks.

4.4 An Example: A Simple, Structural Open Economy Model

4.4.1 The Model
We wish to illustrate some of the ideas above using a relatively simple DSGE model. For this
purpose we use the model in Lubik and Schorfheide (2006) (LS), which is a simplified version
of Gali and Monachelli (2002).

The model has four equations. An open economy IS curve

ỹt = Etỹt+1 − [τ + α(2− α)(1− τ)](Rt − Etπt+1)− α[τ + α(2− α)(1− τ)]ρq∆qt

+ρAdAt − α(2− α)
1− τ

τ
(1− ρy∗)ỹ

∗
t , (4.11)

0 < α < 1, τ−1 > 0,

an open economy Phillips curve

πt = βEtπt+1 − α(1− βρq)∆qt +
κ

τ + α(2− α)(1− τ)
ỹt

+
κα(2− α)(1− τ)

τ [τ + α(2− α)(1− τ)]
ỹ∗t (4.12)

an exchange rate equation

∆et = πt − (1− α)∆qt − π∗t , (4.13)

and the policy rule

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2ỹt + ψ3∆et] + εR
t . (4.14)

In the equations abovẽyt is the difference between the log of the level of output (yt) and the log
level of technology (At), y∗t is the log of world output,Rt is the interest rate,πt is the inflation
rate,π∗t is the world inflation rate,qt is the log of the terms of trade, andet is the nominal
exchange rate.
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The terms of trade should theoretically be endogenous but this created problems in their esti-
mation and so was assumed to be an observed exogenous shock evolving as

∆qt = ρq∆qt−1 + εq
t . (4.15)

The variablesdAt, ỹ
∗
t , π̃∗t , ε

R
t are unobservable shocks, being the growth rate in technology, the

world level of output, world inflation and the monetary policy shock respectively. The first three
follow AR(1) processes:

dAt = ρadAt1 + εa
t (4.16)

ỹ∗t = ρy∗ ỹ
∗
t−1 + εy∗

t , (4.17)

π∗t = ρπ∗π
∗
t−1 + επ∗

t , (4.18)

with ρa, ρy∗ , ρπ∗ assumed to lie between zero and unity andεa
t , ε

y∗
t , andεπ∗

t being white noise
processes. The monetary policy shockεR

t is taken to be white noise. Since technology is an
I(1) process, output will also be, and so the model is made stationary by usingỹt = yt − ln At

andỹ∗t = y∗t − ln At, wherelnAt = ln At−1 + dAt is the log level of technology. LS estimated
the time preference parameter as a function of a real interest rate of 2.5, i.e.β =.99

4.4.2 Estimation of the Model
The model is estimated on the UK data provided on Schorfheide’s web page. This contains
series on the quarterly real output growth∆yt, annualized quarterly inflationπ4t, annualized
nominal interest rateR4t, quarterly exchange rate change∆e, and terms of trade growth∆q.
The series were de-meaned and the data are related to the model variables as follows

[∆yt, π4t, R4t, ∆e, ∆q] = [∆ỹt + dAt, 4× πt, 4×Rt, ∆e, ∆q].

LS estimate the model by Bayesian methods. Table 4.2 contains estimates of the parameters.12

There is some difference between our Bayesian estimates and LS’s. One source of the difference
is that we just used 20,000 draws from a Metropolis algorithm and they used one million. All
results presented below when evaluating the model match to the data are obtained based on LS’s
mean posterior estimates reported in their paper, except when they don’t provide an estimate,
whereupon we use our estimates in Table 4.2

Replicating LS’s results, we performed a robustness check on their conclusion about whether the
policy rule (4.14) should include a reaction to the change in exchange rate∆e. We considered
different prior mean values for the parameterψ3 as well as different prior distributions, including
a flat one. The posterior ofψ3 always resulted in a distribution with mode between 0.10 and
.20, and different from zero.

Now if one just fitted (4.15) to the data by OLS one would get an estimate ofρq of -.18, so that
the restriction used in LS’s prior thatρq lies between zero and unity is clearly counterfactual. It
should be noted that the standard error onρq makes the OLS estimate ofρq significantly different
from zero, so imposing an incorrect prior has the potential to distort estimates. To assess the
consequences of this, we therefore used at density centred on zero as the prior. However, the

12 To estimate the model we employ DYNARE version 3.042, by S. Adjemian, M. Juillard and O. Kamenik.
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Table 4.2: Prior distributions and parameter estimation results

Prior distribution LS’ original estimates Our estimates
Density Mean std Mean 90% Interval Mean 90% Interval

ψ1 Gamma 1.5 0.25 1.17 [0.92,1.41] 1.16 [0.97, 1.33]
ψ2 Gamma 0.25 0.13 0.4 [0.15,0.63] 0.4 [0.18, 0.61]
ψ3 Gamma 0.25 0.13 0.12 [0.07,0.18] 0.12 [0.07, 0.17]
ρR Beta 0.5 0.2 0.68 [0.60, 0.77] 0.69 [0.63, 0.77]
α Beta 0.2 0.05 0.12 [ 0.06, 0.18] 0.12 [0.07, 0.18]
r - 2.5 calibrated 2.46 [ 0.90, 3.97] - -
κ Gamma 0.5 0.1 1.93 [ 1.21, 2.65] 1.97 [1.18, 2.67]
τ Gamma 0.5 0.2 0.52 [ 0.34, 0.69] 0.44 [0.6, 0.64]
ρq Normal -0.2 0.2 0.09* [ 0.01, 0.16] -0.17 [-0.29, -0.05]
ρA Beta 0.2 0.05 0.2 [ 0.06, 0.33] 0.18 [0.11, 0.24]
ρy∗ Beta 0.9 0.05 0.97 [ 0.95, 0.99] 0.97 [0.96, 0.99]
ρπ∗ Beta 0.8 0.1 0.37 [ 0.27, 0.48] 0.39 [0.29, 0.50]
σR InvGamma 0.5 4 0.36 [ 0.29, 0.43] 0.33 [0.26, 0.39]
σg InvGamma 1.5 4 1.39 [ 1.21, 1.57] 1.33 [1.17, 1.50]
σA InvGamma 1 4 0.67 [ 0.58, 0.77] 0.57 [0.48, 0.65]
σy∗ InvGamma 1.5 4 1.18 [ 0.70, 1.65] 0.83 [0.32, 1.49]
σπ∗ InvGamma 0.55 4 3.23 [ 2.81, 3.64] 3.31 [2.90, 3.73]

Note: * LS use different prior -β(0.2, 0.1)

answers were much the same. Nevertheless, the example raises the question of whether one
should try to get more efficient estimates of parameters such asρq by using the model, as is
attempted here, when they can be estimated independently of the model. Most of those who
generate data on observable shocks for the 3G models in use seem to choose the DGP for such a
series by estimating the parameters independently of the model, and we regard this as a sensible
strategy.

There is also a possibility that prior selection can be done to produce outcomes that look good
from a theoretical perspective even though the data might suggest that the ”nice” results are
more the consequence of the selected prior than the data. Since MLE does not impose such
information it would seem obvious that one would always want to look at the MLEs of the
parameters as well as any Bayesian estimates. A useful feature of DYNARE is that this is
possible. Hence we proceed to such a comparison in the context of the current model. To start
the iterations of the MLE we used the prior mean values of the Bayesian estimation procedure,
but later other values were tried. Table 4.3 contains the results.

First, it should be said that the MLE ofψ3 appears to be much the same as under Bayesian
estimation methods. Second, it is noticeable thatψ2 has the ”wrong sign” for a monetary rule,
and the MLE estimates ofκ andσy∗ look odd, whereas they are much more ”reasonable” for
the Bayesian results. Is this an example of the ”dilemma of absurd parameter estimates” (An
and Schorfheide (2005)) found when applying MLE to DSGE models? To answer that we need
to ask two questions about any ML estimates. The first is whether they are perhaps giving us
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some information about the ”absurdity of the DSGE model”. The second is what our response
should be to them.

Knowing that the MLE gives ”absurd parameter estimates” can often be an indicator of the fact
that there are some specification problems with the model. Consequently, just suppressing these
is not necessarily a wise move. It has always been the case that ”wrong signs and magnitudes”
can be an important part of the discovery process concerning the adequacy of a model, and so an
approach which discards this information seems odd. In many ways the utility of such an action
depends on why one is performing the quantitative work. The Bayesian approach is obviously
attractive if one is simply seeking to assign some values to the parameters of the DSGE model
and it is the only model that we are interested in entertaining. However, if we are not sure that
this will be the final model to be used, we would presumably want to utilize a prior that did not
exclude the possibility of a negative value forψ2. Making the prior onψ2 be normal but centred
on .1 we find that the modal estimate shrinks to .03, so that the sample certainly points towards
a very weak effect of output upon interest rates in this particular specification of the interest rate
rule. In general one wonders how often it is the inadequacy of the DSGE model that leads to
”absurd parameter estimates” when estimated by MLE.

Moving to an appropriate response it has often been the case that those using MLE in instances
like this have fixed the values of parameters that seem absurd. It is often said that Bayesian
methods are a more sophisticated version of this strategy, since a range of possible values are
entertained. But, if there is some identification problem associated with the parameter, it is
really only the mode of the prior that matters. In that case Bayesian methods are akin to just
fixing a coefficient. This is what seems to be happening withκ. The posterior and prior for this
parameter turn out to be virtually identical, and so the MLE equivalent of what the Bayesian
method is doing would be to constrainκ to be the modal value of the prior. When this is done
the MLE estimates are now quite sensible –σy∗ is 1.52 – and only a small negative value ofψ2

(-.02) is left as being ”absurd”.

4.4.3 Matching the Data
We start the evaluation exercise by asking if the model can produce co-trending behavior. How-
ever, because the data is all de-meaned there is no such information provided in the estimates.
The best we can do is to note that, if∆yt had a mean ofµy before demeaning, anddA∗

t was
technology growth with meanµA, then we would have

∆yt = dAt + ∆ỹt

= dAt +
µA

1− ρA

+ ∆ỹt

so thatµA = (1 − ρA)µy. Given thatρA = .53 andµy = .68 we would haveµA = .32.
The standard deviation ofdAt must exceed.45 so that the possibility of technical regress is
extraordinarily high and does not seem to be a realistic description of technology. Of course it
may be thatE(∆yt) is also influenced by non-zero means for terms of trade growth and world
output growth. The former is quite small so it would be unlikely to influenceµy much, but the
latter could be substantial, although the long-run growth would need to be in technology not
shared by the UK, and so it is not easy to believe that this would be substantial.

Technically there are no co-integration implications of this model as only one observable vari-
able,yt, is I(1). But, sinceρy∗ is very close to unity, it would appear thaty∗t is I(1), and the
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Table 4.3: Maximum likelihood estimation

Parameter Initial condition Range Estimate std
ψ1 1.50 [0∞] 1.73 0.38
ψ2 0.25 [−∞∞] -0.06 0.05
ψ3 0.25 [0∞] 0.19 0.05
ρR 0.50 [0 1] 0.53 0.18
α 0.20 [0 1] 0.01 0.01
κ 0.50 [0∞] 15.64 13.19
τ 0.50 [0 1] 0.29 0.16
ρq 0.40 [-1 1] -0.21 0.10
ρA 0.20 [0 1] 0.96 0.03
ρy∗ 0.90 [0 1] 0.98 0.02
ρπ∗ 0.70 [0 1] 0.04 0.08
σR 0.50 [0∞] 0.58 0.21
σg 1.50 [0∞] 1.32 0.10
σA 1.50 [0∞] 0.03 0.02
σy∗ 1.50 [0∞] 17.0 32.1
σπ∗ 0.55 [0∞] 3.16 0.54

presence of twoI(1) shocksAt andy∗t among the twoI(1) variablesyt andy∗t means that there
would be no co-integration between UK and foreign output.

A further relationship that also involvesI(1) variables is the levels version of (4.13):

et = pt − (1− α)qt − p∗t . (4.19)

Sincep∗t is I(1) there is no co-integration betweenet, qt andpt, but, if p∗t was observable, the
real exchange rate should be co-integrated withqt. Of course the relation would become an
identity in this case which would be immediately counter-factual. Mostly this has been avoided
in open economy DSGE models through the addition of a risk premium to this equation and the
properties of it will determine if there is co-integration between the real exchange rate and the
terms of trade. Risk premia that are close to unit root processes seem to bedevil the literature,
e.g. in Adolfson et al. (2005) the risk premium shock has an AR(1) coefficient of .995.

How good is the model at producing the dynamic responses seen in the data. Tables 4–7 provide
some evidence on how it does at matching univariate moments and dynamics.13 These show
that the model fails on many dimensions – output is too volatile, there is effectively no serial
correlation in output growth, and too much in exchange rate changes.Prima facie, given the
difficulties that researchers have faced in explaining exchange rate variation, what is surprising
is how well the model and data match on this dimension. But it is simple to explain why. The
world inflation shock is actually a ”residual” since it only appears in (4.19) and therefore its
volatility can be adjusted so that the model produces an exchange rate volatility that matches the
data. It’s hard to see this as an ”explanation”. To dig deeper one might ask whether a standard

13 Note the peak in autocorrelation for the fourth lag of inflation. Despite what Lubik and Schorfheide (2006) state
it seems as if the inflation rate for the UK may be seasonally unadjusted.
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deviation of quarterly world inflation of 3.7 is realistic. Over this period most estimates would
suggest something closer to 1.6.

Table 4.4: Descriptive statistics of actual data

mean std ∆y π4 R4 ∆e ∆q
∆y 0.68 0.56 1
π4 3.85 3.47 -0.15 1
R4 8.45 3.12 -0.22 0.53 1
∆e 0.16 3.29 0.09 -0.18 0.11 1
∆q -0.04 1.35 -0.12 0.04 -0.02 -0.47 1

Table 4.5: Implied descriptive statistics for DSGE model variables

mean std ∆y π4 R4 ∆e ∆q ∆A y∗ π∗

∆y 0 0.72 1
π4 0 6.49 0.01 1
R4 0 4.95 -0.01 0.81 1
∆e 0 4.00 -0.10 0.21 0.36 1
∆q 0 1.35 0.07 -0.01 -0.02 -0.31 1
∆A 0 0.57 0.87 0.07 0.03 0.01 0.00 1
y∗ 0 3.00 -0.05 0.87 0.98 0.38 0.00 0.00 1
π∗ 0 3.78 0.09 0.20 -0.02 -0.86 0.00 0.01 -0.03 1

Turning to systems dynamics, Tables 9 and 10 compare the VARX(1) equations estimated from
data with those implied by the model. The model-implied results presented below were obtained
by simulating 100,000 pseudo-data points from the estimated DSGE model and then fitting the
same VARX(1) as was applied to the actual data. It is readily apparent that the match between
the two is quite poor.

The same can be said for the covariance matrices of the fitted VARX(1) models in Tables 9 and
10. As was mentioned earlier a way to summarize these differences is to directly compare the
diagonal elements (the variances) and to determine what the correlation of the implied shocks
would be from the model. Table 12 does this, with the ratio of the implied to observed standard
deviations on the diagonal. Since it was assumed in the estimation that the shocks are uncor-
related the off-diagonal elements shed light on the validity of that assumption. Now there are
eighty observations so that the standard error of the correlations under the assumption that they
are zero would be asymptotically1√

80
= .11, so that many of these correlations would seem to

depart significantly from zero.

As we mentioned earlier a visual impression of the tracking performance of the model is useful
and indeed one can see from the figures that the tracking of output growth and inflation seems
to be reasonable, although the relative volatilities are very different.14 The dotted lines show

14 The standard deviation of the ”explained” part of output growth is .37, i.e. some 34% less than the standard
deviation of the data. This is not unexpected given that it is effectively a one-step forecast from an autoregressive
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Table 4.6: Autocorrelation of actual time series

Lag
1 2 3 4 5

∆y 0.37 0.26 0.33 0.26 0.23
π4 0.07 0.33 -0.05 0.65 -0.13
R4 0.95 0.89 0.82 0.74 0.67
∆e 0.15 -0.10 -0.03 -0.02 -0.15
∆q -0.17 -0.02 0.05 0.05 -0.15

Table 4.7: Implied autocorrelation of DSGE model variables

Lag
1 2 3 4 5

∆y 0.03 0.02 -0.01 0 0
π4 0.78 0.69 0.65 0.63 0.61
R4 0.97 0.95 0.92 0.90 0.87
∆e 0.46 0.28 0.20 0.16 0.14
∆q -0.17 0.01 0 0 0
∆A 0.19 0.04 0 0 0
y∗ 0.97 0.94 0.92 0.89 0.87
π∗ 0.44 0.19 0.09 0.05 0.03

what happens when shocks are taken to have zero autocorrelations (so that the dynamics are
effectively much more restrictive) and it is obvious that the assumption that shocks are serially
correlated is very influential in explaining the data. Without it the tracking performance of
the model would be very poor. The particularly poor description of the terms of trade clearly
arises because the series displays mean reversion (ρq < 0) but the assumption used in Bayesian
estimation is that it does not.

Rather than looking just at growth rates etc. we decided to examine the log levels of output,
prices, the nominal exchange rate and the terms of trade, as sometimes this comparison can
pick up deficiencies more clearly. We have added back into the series displayed in the previous
figures the sample means, and then cumulated these adjusted variables. Since we added the
same values to both model and data before cumulating this has no effect on the final outcomes,
but provides a picture that is more recognizable. It it is pretty clear from these figures that
the model fails to capture the early 1990s recession very well, something that can be seen in
the growth rate information, but not as clearly. There are also difficulties in tracking the price
level and the movements in sterling, although it has to be said that the 1992 crisis leading to
the departure of sterling from the ERM would scarcely be explained by a model like this. The

model. In contrast the implied standard deviation for this quantity from the model is some 60% greater. This
illustrates the point we made earlier that we would want the estimates of the output growth implied by the model
to be constrained so that they produced a volatility that was some 60% higher than what is in the data.
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Table 4.8: VARX(1) model parameter estimates from data

∆yt π4t R4t ∆et

∆yt−1 0.3214 1.2365 0.0931 -1.5965
(3.0045) (2.0705) (0.5367) (-2.8895)

π4t−1 -0.0173 -0.3367 0.0630 -0.0656
(-0.8235) (-2.8638) (1.8462) (-0.6036)

R4t−1 -0.0278 0.8366 0.9416 0.0327
(-1.1763) (6.3329) (24.5427) (0.2682)

∆et−1 -0.0035 -0.0965 -0.0195 0.1148
(-0.1905) ( -0.9315) (-0.6486) (1.1972)

∆qt -0.0313 0.2329 -0.0574 -1.0673
(-0.7131) (0.9490) (-0.8061) (-4.7003)

constant -0.0091 -0.0285 -0.0786 -0.1070
(-0.1574) (-0.0884) (-0.837) (-0.3579)

Note: t-statistics in parentheses

Table 4.9: Implied VARX(1) parameter estimates from DSGE model

∆yt π4t R4t ∆et

∆yt−1 0.0400 -0.5280 -0.1283 -0.1201
(3.97) (-9.75) (-9.59) (-2.58)

π4t−1 -0.0423 0.4583 0.1104 0.0047
(-20.87) (43.13) (42.03) (0.52)

R4t−1 0.0510 0.5230 0.8503 0.1500
(18.38) (35.95) (236.33) (12.01)

∆et−1 0.0026 -0.0004 0.0339 0.4055
(1.28) ( -0.03) (12.71) (43.80)

∆qt 0.0363 -0.0846 -0.1153 -0.9887
(6.56) (-2.91) (-16.07) (-39.68)

constant -0.0083 -0.0661 -0.0023 0.0281
(-1.10) (-1.67) (-0.23) (0.83)

Note: t-statistics in parentheses

strong subsequent appreciation of sterling is also missed by the model but this was also a feature
that was badly forecast by most commentators.
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Table 4.10: Covariance matrix of residuals of VARX(1) model from data

Equation ∆yt π4t R4t ∆et

∆yt 0.2478
π4t -0.1443 7.7209
R4t 0.0826 0.7506 0.6512
∆et 0.1427 -1.6908 0.2320 6.6090

Table 4.11: Implied covariance matrix of VARX(1) residuals from DSGE model

Equation ∆yt π4t R4t ∆et

∆yt 0.5054
π4t 0.1832 13.884
R4t -0.1424 1.2314 0.8493
∆et -0.3453 -0.9621 0.3441 10.2325

5. Operational Issues

We have spent a good deal of time discussing the issues relating to DSGE models as they
are used in the academic literature. One reason for this is that there is much more work that
has been done on the latter class of models than on 3G or 4G models. Thus the information
provided about the estimation and fit of models such as FRBUS, QPM and even BEQM is
minimal. From what literature there is on the properties of 3G and 4G models it is clear that
many of the problems coming up with simpler DSGE models also occur in the more complex
policy models. Consequently, understanding these issues in the simpler context seems important
before one comes to consider the extra complications that arise if one wants to migrate DSGE
models into a central role in policy decisions. Of course DSGE (certainly CGE) models have
often been used as auxiliary models, i.e. either designed to answer a limited range of specific
questions at a particular point in time or as a check on conclusions reached with the primary
model, but here we want to examine the difficulties that one has to face if they are to become
the primary model.

5.1 Difficult and Poor Data

DSGE models in academic use range from NKPM type systems – which eschew a description
of production – to RBC type models where it becomes central. 4G models tend to blend both
of these aspects and such a synthesis alone makes them more complex. RBC models also have
a significant difference to many NKPMs in the fact that stocks of capital and household wealth
become key elements in them. NKPMs tend to resemble VAR studies, being composed largely
of flow variables, and rarely include stocks (of course all models have implied stock behaviour
but there is no stock-flow consistency built into most NKPMs). In 3G and 4G models the role
of stocks is central to both. This has the implication that, at some point, stocks will need to be
measured. Treating them as unobserved and trying to estimate them via filters, as in Smets and
Wouters (2003), is rarely going to be an option when policy decisions are to be made.
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Table 4.12: Correlation matrix and variance ratios of model shocks needed to match data

Equation ∆yt π4t R4t ∆et

∆yt 1.55
π4t 0.42 1.28
R4t -0.18 0.05 1.59
∆et -0.30 -0.27 0.21 1.23

Figure 4.1: Estimation results and the model predictions
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Another difficulty is that all models which derive from a DSGE philosophy are guided by the
idea that there is a steady state to the economy. Generally this involves assuming that ratios
of certain variables are constants. But often a glance at the data doesn’t seem to support this
idea. One can see this difficulty in accounts of FPS and BEQM, where certain ratios seem to
have changed a great deal over a sample period, and the users of the model are forced to make
ad-hoc decisions about what values to allocate to the ratios. It may be reasonable to impose
the last value when one uses the model to make forecasts, rather than using the average over
a sample period. This is where informal methods of estimation probably pay off. Trying to
estimate these models by ML or Bayesian methods seems a little odd when the data just doesn’t
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Figure 4.2: Estimation results in levels
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reflect the specification of the model. This problem is likely to be particularly acute in transition
economies. Indeed, the Negro et al. (2004) investigation suggested that some of the problems
with the Smets-Wouters model came from the fact that the balanced growth restrictions imposed
on the model may have led to poor forecast performance.

5.2 If the Base Model Can’t Fit the Data What Do We Do?

There are many ways in which this model might not fit the data. In some instances we might be
able to fit the data better by varying the model parameters, e.g. if we have some difficulties in
getting cointegration between variables we might be prepared to change the model parameters
to ensure that this holds even if the fit to the dynamics becomes poorer. Because many DSGE
models have been fitted using data from which permanent components have been removed there
has been an excessive amount of attention paid to choosing parameters that attempt to match
dynamics.

If it is the case that the long-run properties look satisfactory, and one does not want to change
the parameters of the base model to affect the dynamics even more, it needs to be asked how we
would proceed if it was desired to get a better fit to the dynamics. To analyse this, let the base
or core model in (2.4) be re-written as

∆y∗t = (P − I)y∗t−1 + D0xt−1 + D0∆xt + G0ut, (5.20)

while the data comes from

∆yt = (F1 + F2 − I)yt−1 + F2∆yt−1 + Nxt−1 + N∆xt + νt,

where both the shocksut and the errorsvt are taken to be white noise. Then

∆ζt = {(F1 + F2 − I)yt−1 + Nxt−1} − {(P − I)y∗t−1 + D0xt−1} (5.21)

+F2∆yt−1 + N∆xt −D0∆xt + νt −G0ut,
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whereζt = yt − y∗t . Hence, after recognizing the presence of co-integration one would get

∆ζt = αDψD
t−1 − αMψM

t−1 + F2∆yt−1 + (N −D0)∆xt

+νt −G0ut,

where ”D” refers to data and ”M” to model. In this expression we have distinguished the
cointegrating errorsψD

t andψM
t . Provided the long-run implications of the model are the same

as the data, both ofψD
t andψM

t would beI(0); otherwise the difference betweenyt andy∗t
would beI(1). This points to the crucial importance of investigating the long-run implications
of the model first.

Now, for the data to agree with the model,F2 = 0, N = D0, ψD
t−1 = ψM

t−1. Thereupon, adding
the extra regressorsψD

t−1, ∆yt−1, and∆xt into the ECM generated by the model would provide
a way of matching the data. The forecast from the model would then be adjusted with predicted
ζt to get the final forecast. A more formal way of getting this same result would be to follow the
approach used in 3G models in which the extra variables were introduced to match the dynam-
ics, by thinking of adjustingyt to meet a targety∗t when there are adjustment costs (possibly
polynomial).

The procedure above is essentially the core/non-core distinction used in working with BEQM
by the Bank of England. A comprehensive description of this is available in Alvarez-Lois et al.
(2005). Non-core variables such as∆yt−1 (or variables that are not even in the core model) are
introduced in this supplementary equation with the aim of modifying the core model projec-
tions in an operational environment. The main difficulty in performing this analysis resides in
the construction ofy∗t . If there are no unobservable shocks then we can construct it simply by
solving (2.4) fory∗t with a series onxt. But when there are unobservable shocks it will generally
be the case that we need to constructy∗t from the data onyt, which means that the distinction
between data and model becomes blurred. It also has the effect that, if we were doing a dynamic
simulation, the model solutiony∗t would be effectively made a function of the past and current
values of the complete model predictions ofyt, i.e. there would be feedback of the non-core
part of the model into the core model. The Bank of England argued very strongly against this
outcome, maintaining that the core model solution has to be protected from the non-core vari-
ables. Within BEQM this strategy seemed to work well, but it should be said that there do not
seem to be any unobservable shocks in that model in some of its operational uses. Whilst un-
observable shocks are experimented with, these basically provide information on the responses
of the model, and do not appear in simulations of the historical path. Of course, in a typical
forecast environment, a path for the unobservable shocks might be provided, and so this would
circumvent the feedback problem.

5.3 Flexibility

Any model used for policy has to be flexible. It needs to be adaptable so as to meet policy
makers’ changing preferences and to be able to incorporate their opinions and attitudes. This
constraint goes to the nub of what a policy model is about. Do we want an economic story, or the
ability to effectively utilize a lot of numbers? 2G models handled many pieces of information.
They generally had a story, but often it was a bit confused, and it was left to their owners to
make sense of it. Later generation models have a better story but perhaps less flexibility, and
one needs methods to produce the desired degree of flexibility. The core/non-core distinction
used in BEQM seems a good start, although it appears to be more directed towards augmenting
the core model with opinions that the MPC and their advisers have, meaning that the number
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of extra series being incorporated into the complete model projections seems to be relatively
small.

An alternative set of auxiliary models that have become popular in recent times, and which
summarize the information in many series, are factor models. It would seem worthwhile incor-
porating this modelling approach into the policy selection process in a more formal way than
simply as a statistical model providing auxiliary information. The simplest way would appear
to be via the core/non-core approach above but, as the derivation of the estimating equations
shows, the error terms in such equations include the shocks of the core model, and so the ques-
tion that might arise is whether the constructed factors are uncorrelated with these. Much of
the literature that examines this type of set-up, i.e. a VAR augmented by factors, e.g. Forni
et al. (2003), make this assumption. But it does not seem easy to believe this of factors that
are constructed from a good deal of survey information, and these are often the most important
determinants of movements in the measured factor. Whether this matters needs to be looked
at more carefully, as we are not interested in estimating the coefficients attached to the factors
themselves, but rather their contribution to a forecast. Consequently, to the extent that they can
capture shocks that are unobservable, they may well provide important non-core information
that can be efficiently exploited.

6. Conclusion

Macroeconometric modelling has seen a steady progression away from single equation data-
dominated approaches towards relatively complete, albeit small, systems. This trend has been
driven by the desire to have a strong economic perspective which links much more closely
with models developed by macro theorists. It does not seem likely that this movement will be
reversed. Indeed, a number of central banks have already adopted variants of 4G models as the
core model in their forecasting and policy assessment tasks.

It is notable that the more information that a central bank needs to provide in terms of forecasts
and explanations of policy decisions, the more there is a tendency to utilize 3G and 4G models.
Thus a central bank like the Reserve Bank of Australia, which has to publish little in the way of
forecasts, still works with a small 2G model – see Stone et al. (2005). Since it seems unlikely
that the future will see a decline in the amount of information and explanation that is demanded,
DSGE type models are almost certainly ”here to stay”.

Given this fact it is imperative that procedures be developed for evaluating these models as well
as the processes for constructing them, just as happened with the first and second generation of
models. Our feeling is that too little has been done in this regard. In particular, it is still very
hard to determine how well the models track the data. Estimation of the parameters has also
often been poorly described, although it has to be said that the recent enthusiasm for Bayesian
methods may well be going too far in the direction of formal estimation. Often this method
seems to conceal as much as it reveals. Its implementation is not entirely straightforward ei-
ther. Even apart from all the difficulties facing choice of priors, the need to construct posterior
densities by simulation methods often requires a considerable amount of experimentation with
tuning parameters, such as the scaling factor in proposal densities in a Metropolis-Hastings al-
gorithm. Sometimes the answers seem to be quite sensitive to these choices. Some of the priors
that we used with the Lubik and Schorfheide model seemed to give odd simulated posteriors at
times, and adjustments needed to be made to produce ”sensible outcomes”. In many instances
we found that the mode of the posterior obtained by maximizing theL(θ) + ln p(θ) did not
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coincide with the mode of the simulated posteriors even with 1 million simulations. This means
that replication of Bayesian results is not straightforward and it is unclear whether what has
been presented in published studies is in fact a good representation of the ”true” posteriors.
One needs to have more scepticism about the Bayesian results that have been obtained.

Even if we accept that the models are performing adequately in their explanation of outcomes
we still have to recognize that there are many sources of information and some of these have
no obvious correspondence to variables in a DSGE model, e.g. confidence measures. Yet these
are rarely ignored when making policy decisions. How we adapt these models to make them
”policy friendly” is a fascinating question, but it is perhaps the biggest question of them all.
Good work has begun on this topic but more attention will need to be paid to it in the years to
come.
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