

The Effect of Higher Capital Requirements on Bank Lending: The Capital Surplus Matters

Dominika Kolcunová & Simona Malovaná

May 27, 2019 CNB Research Open Day

The authors note that the presentation represents their own views and not necessarily those of the Czech National Bank.

Overview

- Introduction & motivation
- Transmission mechanism & literature review
- Data
- Macro-level approach methodology and results
- Micro-level approach methodology and results
- Conclusion

Introduction

- Relationship between capital requirements, capital and lending crucial for assessing linkages between banking sector and real economic activity
 - Basel III capital requirements costs and benefits
- CNB one of the most active macroprudential authorities three capital buffers + Pillar 2 requirements
- What are the effects of the higher additional capital requirements regarding the loan growth?
- The literature not conclusive so far
- We provide the first analysis using Czech supervisory data
- We utilize different methodologies to provide comprehensive picture

Transmission mechanism

Banks' response to higher capital requirements:

- utilize capital surplus
- slow down balance sheet growth
- change the risk composition of assets
- increase interest rate margins, decrease dividend payout ratio, postpone investment activities in order to increase retained earnings
- increase stated capital

Literature

- Differences between pre- and post-crisis studies
- Some studies analyse the impact of capitalisation instead of capital requirements

Three groups:

- 1. Identifying negative effect of capital requirements on lending
 - Aiyar et al., 2014; Bridges et al., 2015; de Ramon et al., 2016
- 2. Identifying negative effect of capital ratio on lending
 - De Nicolo, 2015; Noss and Toffano, 2014; MAG, 2010
- 3. Identifying a positive effect of higher capital ratios on lending
 - Berrospide and Edge, 2010

Literature cont.

Inconsistencies in the literature due to:

- different explained variables, time spans
- different motivation for changes in capital ratios
 - increase in capital requirements and decrease in capital surplus negative effect on lending, avoiding higher costs of financing
 - profit accumulation, increased capital surplus positive effect, space for balance sheet expansion
 - differences wrt to intentional and unintentional capital surplus

Data

- Supervisory bank-level data (FINREP, COREP)
- Consolidated basis
- Foreign bank branches excluded, wholly state-owned banks excluded
- 14 banks
 - 2004 Q4 to 2017 Q4 (56 quarters) → 630 observations
 - 2014 Q4 to 2017 Q4 (restricted sample) → 276 observations
- 90% of the total assets of the whole banking sector covered

Data cont.

Figure 1: Capital Surplus

- CZK 180 billion surplus at its peak in 2013
- CZK 67 billion surplus at the end of 2017
- Heterogeneity & visible effect of higher additional capital requirements since 2014

Data cont. 2

Figure 2: Year-on-Year Growth of Loans to Private Sector Excluding Interbank Loans

- Significant heterogeneity across banks
- Decrease in the mean, the median and the dispersion of the y-o-y growth in 2014

Simple simulations

- Assessing the importance of individual factors in determining banks' capital surplus
- Simple counterfactual simulations
- Fixing banks' exposure structure or average implicit risk weights at their level in 2008; fixing retain earnings at their level in 2008 or 2014

Simple simulations cont.

Figure 3: Implicit Risk Weights – IRB vs STA; Fixed to 2008 Q1

• Exposure structure crucial under the STA approach; under the IRB approach, risk parameter estimates also plays the role.

Simple simulations cont. 2

Figure 4: Capital Surplus – IRB vs STA; Fixed to 2008 Q1

Simple simulations cont. 3

Figure 5: Aggregate Capital Adequacy Ratio and Capital Surplus; Fixed Retained Earnings

- Retained earnings essential in determining aggregate capital adequacy ratio
- BS expansion possible because of relatively high profitability

Macro-level analysis – methodology

- Bayesian VAR model, independent Normal inverse-Wishart prior distribution
- Information on the macro-financial linkages, dynamics of the whole system
- Immune to endogeneity issues, but coefficients not easily interpretable → IRFs, simple Cholesky decomposition
- Baseline ordering:
 - $Y = [nGDP \ growth, \ credit \ growth, \ proxy \ for \ profit. \ or \ leverage \ ratio, \ iRW \ change, \ capital \ surplus]$
- Robustness check to proposed ordering

Macro-level analysis – results

- Positive relationship between capital surplus and bank loan growth; transmission to nominal GDP growth
- \bullet Lower capital surplus \to less space for BS expansion \to slower credit growth
- Sensitivity analysis wrt different proxy variables for banks' profitability and leverage ratio, RMCI and lending rate

Micro-level Analysis - Methodology

- Dynamic panel data model
- First, different ways of reaction to higher capital requirements examined
- Second, we focus in more detail on the effect on loan growth
 - Direct vs. indirect approach
- Single-equation: LSDV and bootstrap-based bias corrected estimator (BBBC; De Vos et al., 2015)
- Multiple-equation system: three-stage least squares (3SLS) procedure

Micro-level Analysis - Methodology

(6)

$$EA_{i,t} = \alpha_1 E A_{i,t-1} + \beta_1 ORC R_{i,t} + \gamma_1 X_{i,t-1} + \nu_{1,i} + \epsilon_{1,i,t}$$
(1)

$$REA_{i,t} = \alpha_2 RE A_{i,t-1} + \beta_2 ORC R_{i,t} + \gamma_2 X_{i,t-1} + \nu_{2,i} + \epsilon_{2,i,t}$$
(2)

$$CA_{i,t} = \alpha_3 C A_{i,t-1} + \beta_3 ORC R_{i,t} + \gamma_3 X_{i,t-1} + \nu_{3,i} + \epsilon_{3,i,t}$$
(3)

$$CS_{i,t} = \alpha_4 C S_{i,t-1} + \beta_4 ORC R_{i,t} + \gamma_4 X_{i,t-1} + \nu_{4,i} + \epsilon_{4,i,t}$$
(4)

$$RW_{i,t} = \alpha_5 RW_{i,t-1} + \beta_5 ORC R_{i,t} + \gamma_5 X_{i,t-1} + \nu_{5,i} + \epsilon_{5,i,t}$$
(5)

$$\% \Delta loans_{i,t} = \alpha_6 \% \Delta loans_{i,t-1} + \beta_6 ORC R_{i,t} + \gamma_6 X_{i,t-1} + \nu_{6,i} + \epsilon_{6,i,t}$$

where $CS_{i,t}$ is total capital surplus; $\% \Delta loans_{i,t}$ is the year-on-year change in loans to private sector; $RW_{i,t}$ are implicit risk weighs, $EA_{i,t}$ is equity to total assets; $REA_{i,t}$ are retained earnings to total assets. $CA_{i,t}$ is Tier 1 capital plus Tier 2 capital to total assets; $ORCR_{i,t}$ are overall regulatory capital requirements, $X_{i,t-1}$ is a vector of control variables specific for each equation; ν_i stands for bank fixed effects; and $\epsilon_{1,i,t}$ is the error.

Micro-level Analysis - Results - Direct effect

Table 1: The Effect of Higher Additional Capital Requirements

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent var.:	ÈÁ	ŘÉA	ĊÁ	ĊŚ	ĊŚ	ŔŴ	ŔŴ	$\%\Delta loans$
Dependent variable (t-1)	0.956***	0.994***	0.895***	0.641***	0.600***	0.809***	0.793***	0.852***
	(0.058)	(0.059)	(0.054)	(0.046)	(0.046)	(0.059)	(0.053)	(0.057)
ORCR	0.0208	0.564*	-0.052	-0.609***	-0.636***	-0.056	0.046	-0.737**
	(0.046)	(0.032)	(0.032)	(0.073)	(0.076)	(0.171)	(0.176)	(0.354)
ROA (t-1)	0.004	0.083	-0.013	-0.147	-0.066			
	(0.156)	(0.073)	(0.138)	(0.259)	(0.259)			
LLPA (t-1)	0.241	0.154	0.166	-0.386***	-0.445***	1.007***	1.121***	0.437
	(0.210)	(0.170)	(0.123)	(0.120)	(0.121)	(0.366)	(0.379)	(0.575)
CA (t-1)								1.593***
								(0.493)
Lending rate (t-1)								-1.269*
								(0.669)
:				4.				:
Observations	276	276	276	276	276	276	276	276

Note: Specifications are estimated using bootstrap-based bias corrected estimator. Bootstrapped standard errors reported in parentheses; ***, **, and * denote the 1%, 5%, and 10% significance levels.

1pp increase in capital requirements:

- decreases CS by 0.64pp
- decreases loan growth by 0.74pp

Micro-level Analysis - Results - Direct Effect

- Second, detailed analysis of the effect on loan growth
- Wrt capitalisation: the effect remains significant only for banks with lower capital surplus (-1.2pp)

Table 2: The Effect of Higher Additional Capital Requirements wrt Banks Capital Surplus

	(1)	(2)
Estimation method:	BBBC	LSDV
Dependent var.:	$\%\Delta loans$	$\%\Delta loans$
$\%\Delta loans$ (t-1)	0.853***	0.749***
	(0.0582)	(0.0465)
ORCR*dLowCS	-1.147*	-1.751***
	(0.659)	(0.576)
ORCR*(1-dLowCS)	-0.472	-0.606
	(0.305)	(0.365)
LLPA (t-1)	0.445	0.166
	(0.496)	(0.263)
CA (t-1)	1.404**	1.794**
	(0.542)	(0.695)
Lending rate (t-1)	-1.161*	-1.501***
	(0.673)	(0.442)
Real GDP growth	-0.0859	-0.0838
	(0.377)	(0.295)
Observations	276	276

- Wrt to different lags and leads (announcements, phase-ins)
 - the reaction is strongest when the requirements become effective
 - → more lags or leads not necessary

Micro-level Analysis - Results - Indirect Effect

- Multiple equation system (3SLS)
- The effect of higher ORCR via its effect on the capital surplus

$$CS_{i,t} = \alpha_8 CS_{i,t-1} + \beta_9 ORCR_{i,t} + \gamma_8 X_{i,t-1} + \nu_{8,i} + \epsilon_{8,i,t}$$
(7)

$$\% \Delta loans_{i,t} = \alpha_9 \% \Delta loans_{i,t-1} + \beta_{10} CS_{i,t-1} + \gamma_9 X_{i,t-1} + \nu_{9,i} + \epsilon_{9,i,t}$$
(8)

Table 3: Estimation Results of Higher Additional Capital Requirements – System of Two **Equations**

	(1)	(2)	(3)	(4)
Dependent var.:	CS	$\%\Delta loans$	CS	$\%\Delta loans$
Dependent var. (t-1)	0.516***	0.769***	0.519***	0.765***
	(0.040)	(0.0334)	(0.040)	(0.0319)
ORCR (t-1)	-0.702***			
	(0.063)			
CS (t-1)		0.197		
		(0.248)		
ORCR*dLowCS			-0.668***	
			(0.084)	
ORCR*(1-dLowCS)			-0.711***	
			(0.066)	
CS (t-1)*dLowCS				2.188***
				(0.445)
CS (t-1)*(1-dLowCS)				-0.236
				(0.251)
Observations	27	76	27	<u>'6</u>

 Significant only for low-capitalised banks: 1pp increase in ORCR decreases loan growth by 0.7*2.2 = 1.5pp

Summary of Results

Table 4: Summary of Selected Estimation Results of the Effect of Higher Additional Capital Requirements on Bank Loan Growth

Table	Specification	Data sample	Estimation technique	ST effect	LT effect
2	direct effect	short	BBBC	-0.74**	-4.98
3	direct effect, low-cap	short	BBBC	-1.19*	-7.85
3	direct effect, better-cap	short	BBBC	not statistical	ly significant
C2	direct effect	short	LSDV	-1.03**	-4.21
C2	direct effect, low-cap	short	LSDV	-1.75***	-6.98
C2	direct effect, better-cap	short	LSDV	not statistical	lly significant
4	indirect effect	short	3SLS	not statistical	ly significant
4	indirect effect, low-cap	short	3SLS	-1.47***	-6.22
4	indirect effect, better-cap	short	3SLS	not statistical	ly significant
C4	indirect effect	short	LSDV	not statistical	lly significant
C4	indirect effect, low-cap	short	LSDV	-1.48***	-6.18
C4	indirect effect, better-cap	short	LSDV	not statistical	lly significant
C4	indirect effect	short	BBBC	not statistical	lly significant
C4	indirect effect, low-cap	short	BBBC	-1.09**	-6.51
C4	indirect effect, better-cap	short	BBBC	not statistical	lly significant

Simulation Exercise

Hypothetical loan growth if no increase in ORCR had occurred

Figure 7: Actual vs. Simulated Bank Loan Growth, Indirect Effect – Banks with Relatively Low (Left) and High (Right) Capital Surplus

- Significant differences between banks with low and high CS
- Loan growth of banks with low CS might have been higher without additional ORCR

Simulation Exercise

 This does not hold for the sector as a whole, which remains well-capitalised and absorbs higher capital requirements

Figure 8: Actual vs. Simulated Bank Loan Growth – Indirect Effect

Conclusion

- We study the impact of higher additional capital requirements on the loan growth
- Both macro- and micro-level approach
- Bayesian VAR model and dynamic panel data model

Results:

- The effect of higher additional capital requirements on loan growth is negative
- The negative relationship applies primarily to the low-capitalised banks
- 1pp increase in capital requirements depresses loan growth by about 1.2–1.8pp
- Capital surplus is important in the transmission of higher capital requirements

Thank you!

Figure 9: Bank-Level Capital Requirements

Appendix

Figure 10: Risk-Weighted Credit Exposures (Left Chart: Amount in CZK Billions; Right Chart: Share in %)

Appendix

Figure 11: Non-Risk-Weighted Credit Exposures (Left Chart: Amount in CZK Billions; Right Chart: Share in %)

Appendix

Figure 12: Implicit Risk Weights under the STA and IRB Approaches (%)

Micro-level Analysis - Complete results

Table 5: The Effect of Higher Additional Capital Requirements

					•	•		
Dependent var.:	(1) EA	(2) REA	(3) CA	(4) CS	(5) CS	(6) RW	(7) RW	$\% \Delta loans$
Dependent variable (t-1)	0.956***	0.994***	0.895***	0.641***	0.600***	0.809***	0.793***	$\frac{-\sqrt{6}\Delta to ans}{0.852***}$
	(0.058)	(0.059)	(0.054)	(0.046)	(0.046)	(0.059)	(0.053)	(0.057)
ORCR	0.0208 (0.046)	0.564* (0.032)	-0.052 (0.032)	-0.609*** (0.073)	-0.636*** (0.076)	-0.056 (0.171)	0.046 (0.176)	-0.737** (0.354)
ROA (t-1)	0.004 (0.156)	0.083 (0.073)	-0.013 (0.138)	-0.147 (0.259)	-0.066 (0.259)			
LLPA (t-1)	0.241 (0.210)	0.154 (0.170)	0.166 (0.123)	-0.386*** (0.120)	-0.445*** (0.121)	1.007*** (0.366)	1.121*** (0.379)	0.437 (0.575)
CA (t-1)								1.593*** (0.493)
Interbank loans/A (t-1)					0.006 (0.038)		0.133 (0.157)	
Loans to CB&CG/A (t-1)					-0.002 (0.010)		0.012 (0.027)	
Loans to PS (t-1)					-0.049** (0.022)		0.007 (0.053)	
Bonds/A (t-1)					0.016 (0.016)		0.080 (0.049)	
Lending rate (t-1)					(0.010)		(0.010)	-1.269* (0.669)
Real GDP growth	-0.0170 (0.041)	-0.068** (0.030)	0.010 (0.031)	0.087 (0.062)	0.092 (0.063)	-0.122 (0.166)	-0.161 (0.169)	-0.121 (0.329)
PX growth	-0.003	0.002	0.003	0.031***	0.028**	-0.024	-0.013	(0.329)
Spread	(0.008) 0.0229	(0.005) -0.057	(0.006) -0.203*	(0.011) 1.099***	(0.012) -1.076***	(0.027) 0.293	(0.027) 0.0218	
	(0.159)	(0.114)	(0.112)	(0.220)	(0.231)	(0.545)	(0.570)	
Observations	276	276	276	276	276	276	276	276

Note: Specifications are estimated using bootstrap-based bias corrected estimator. Bootstrapped standard errors reported in parentheses; ***, **, and * denote the 1%, 5%, and 10% significance levels.

Micro-level Analysis - Complete results

Table 6: The Effect of Higher Additional Capital Requirements – System of Two Equations

Dependent var.:	(1) CS	$\% \Delta loans$	(3) CS	$\% \Delta loans$
Dependent var. (t-1)	0.516*** (0.040)	0.769*** (0.0334)	0.519***	0.765*** (0.0319)
ORCR (t-1)	-0.702*** (0.063)	(0.000.7)	(616.15)	(010010)
CS (t-1)		0.197 (0.248)		
ORCR*dLowCS			-0.668*** (0.084)	
ORCR*(1-dLowCS)			-0.711*** (0.066)	
CS (t-1)*dLowCS			(====)	2.188*** (0.445)
CS (t-1)*(1-dLowCS)				-0.236 (0.251)
ROA (t-1)	-0.035 (0.170)		-0.037 (0.172)	
LLPA (t-1)	-0.531*** (0.106)	0.380 (0.654)	-0.532*** (0.106)	-0.053 (0.629)
Interbank loans/A (t-1)	0.002 (0.036)	(3.33.)	0.010 (0.037)	(0.020)
Loans to CB&CG/A (t-1)	-0.008 (0.011)		-0.008 (0.011)	
Loans to PS excl. IL/A (t-1)	-0.064*** (0.019)		-0.061*** (0.019)	
Bonds/A (t-1)	0.019) 0.015 (0.017)		0.016 (0.017)	
Lending rate (t-1)	(0.017)	-0.853 (0.526)	(0.017)	-0.973* (0.505)
CA (t-1)		ì.901* [*] *		ì.674* [*] *
Real GDP growth	0.100*	(0.500) -0.681***	0.095*	(0.479) -0.390
PX growth	(0.056) 0.028***	(0.262)	(0.056) 0.029***	(0.256)
Spread	(0.0107) -1.058***		(0.0108) -1.077***	
IRB dummy	(0.212) -0.891 (0.556)		(0.212) -1.373 (1.008)	
Observations	,	276	,	276

Note: Specifications are estimated using three-stage least squares estimator. Standard errors reported in parentheses; ***, **, and * denote the 1%, 5%, and 10% significance levels.

Macro-level analysis – results cont.

Figure 13: Additional IRFs – negative shock to capital surplus

Macro-level analysis – results cont. 2

Figure 14: Additional IRFs – negative shock to capital surplus

