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Michal Franta* 

 
Abstract 

A small-scale vector autoregression (VAR) is used to shed some light on the roles of 
extreme shocks and non-linearities during stress events observed in the economy. The 
model focuses on the link between credit/financial markets and the real economy and is 
estimated on US quarterly data for the period 1984–2013. Extreme shocks are accounted 
for by assuming t-distributed reduced-form shocks. Non-linearity is allowed by the 
possibility of regime switch in the shock propagation mechanism. Strong evidence for fat 
tails in error distributions is found. Moreover, the results suggest that accounting for 
extreme shocks rather than explicit modeling of non-linearity contributes to the 
explanatory power of the model. Finally, it is shown that the accuracy of density forecasts 
improves if non-linearities and shock distributions with fat tails are considered. 

 

Abstrakt 

K vysvětlení role extrémních šoků a nelinearit během napjatých období pozorovaných 
v ekonomice je použita vektorová autoregrese malého měřítka. Model se soustředí na 
vztah mezi úvěrovým/finančním trhem a reálnou ekonomikou a je odhadnut na 
čtvrtletních datech pro Spojené státy za období 1984–2013. Extrémní šoky jsou 
zohledněny předpokladem šoků v redukované formě následujících t-rozdělení. Nelinearita 
je modelována možností změny režimu v mechanismu přenosu šoků. Je ukázáno, že 
distribuce chyb vykazují silné konce (fat tails). Výsledky dále naznačují, že specifikace 
zohledňující extrémní šoky vysvětlují pozorovaná data lépe než specifikace 
s nelineárními vztahy. Nakonec je také ukázáno, že přesnost predikcí hustot se zvětší, 
jestliže bereme v úvahu nelinearity a distribuce šoků se silnými konci. 
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Nontechnical Summary 

Extreme economic events – those such as the Great Recession starting in 2008 – are an integral 
part of economic reality. However, a detailed explanation of the mechanism of such events is 
often available only after they have happened. A more general understanding of such events could 
aid the formulation of measures that are not based solely on the experience of the latest crisis. 

An important question can be posed regarding the dynamics of stress/extreme events. Is an 
extreme event a consequence of an extreme shock, or can the shock itself be of moderate size but 
the interactions between economic variables become unusual? A shock is an event which is by 
definition unexpected and independent of the current state of the economy. Therefore, it is 
difficult to set any pre-emptive measure. The focus should rather be placed on being prepared for 
the ex-post reaction to an extreme event. On the other hand, if the substantive element of the 
stress dynamics lies in the interactions between variables, regulation can be targeted at affecting 
such interactions.  

This paper provides some empirical evidence on the roles of rare shocks and unusual interactions 
between economic variables. Rare shocks are modeled by error distributions with fat tails, i.e., 
distributions that ascribe a higher probability to extreme events by comparison with normally 
distributed errors. Unusual interactions are represented by non-linear models that are able to 
account for the situation where a change in one variable leads to a more than proportional change 
in another. More precisely, a threshold vector autoregression model with t-distributed shocks is 
employed. 

The estimation results suggest that accounting for fat tails in error distributions is important for 
modeling stress events appropriately. Strong evidence of fat tails is found, and the finding is 
robust to the measure of financial/credit market conditions used. Modeling non-linearity, 
regardless of whether it arises in the form of changes in the dynamic relationships between 
endogenous variables or in changes in shock volatility, does not improve the explanatory power of 
the model very much. The importance of accounting for non-linearity is suggested by an 
examination of the out-of-sample fit. It turns out that allowing for regime changes and shock 
distributions with fat tails improves the density forecasting accuracy. Such modeling features 
result in superior forecasts of the tails of density forecasts. Moreover, the improvement in the 
accuracy of density forecasts is not solely related to the recent Great Recession. 
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1. Introduction 

One of the responses of economic research to the Great Recession has consisted in a thorough 
examination of the shock distributions assumed in macroeconomic models. Attention has shifted 
towards non-Gaussian error structures, especially those exhibiting fat tails. For example, the 
Student’s t-distribution is often considered because it ascribes higher probability to extreme 
events. Within the family of DSGE models, such investigation includes the studies by Chib and 
Ramamurthy (2014) and Cúrdia et al. (2014). Chiu et al. (2014) examine t-distributed shocks in 
vector autoregressions. These studies suggest that assuming error distributions with fat tails can 
provide a superior modeling tool for explaining observed data and for forecasting.  

The research interest in fat-tailed error distributions can be understood from the evidence 
provided by Figure 1. The figure shows the absolute values of the normalized reduced-form errors 
estimated by a Bayesian VAR with output, inflation, the short-term interest rate and credit market 
conditions measured under the assumption of normally distributed errors. The exact specification 
of the model is discussed below. The occurrence of extreme values of shocks does not correspond 
to the normal distribution. For all variables the observed ratio of shocks that exceed three standard 
deviations is far greater than the 99.7 rule suggests.1 

Another stream of research revived by the Great Recession focuses on potential non-linearities in 
economic relationships – the prominent example being the interaction between financial markets 
and the real economy. The non-linearity reflects mutually reinforcing feedback effects between 
the two sectors and can be represented by a change in the dynamic relationships between the 
variables and in the contemporaneous impacts of shocks. The non-linear nature of the interaction 
between the real economy and financial markets is examined, for instance, using the concept of 
the financial accelerator (Bernanke et al., 1996). In addition, starting with McCallum (1991) in a 
univariate setting and Balke (2000) in multivariate setting, an empirical investigation has also 
been carried out employing non-linear time-series models.2  

The literature dealing with non-linearities draws on normally distributed errors. On the other 
hand, the above-mentioned studies examining fat-tailed error distributions are based on linear or 
linearized models. They allow for non-linear behavior only partially, by assuming stochastic 
volatility of shocks. However, non-linearity can also arise from a change in the dynamics of the 
model reflected by changes in the shock propagation mechanism.  

Importantly, models assuming fat-tailed error distributions can behave similarly to models 
accounting for non-linearities. So, the presence of extreme shocks in Figure 1 could be a 
consequence of a change in the volatility of shocks, a change in the shock propagation 
mechanism, or of non-normally distributed shocks per se. Neglecting non-linearity in the case 
where the data-generating process exhibits such a feature results in a superior fit of models with t-
distributed errors in comparison with the same model estimated under Gaussianity. The statement 
can be reversed – ignoring fat tails of error distributions can falsely suggest the presence of non-
                                                           
1 The 99.7 rule states that 99.7% of normally distributed observations lie within the band constituted by three 
standard deviations around the mean. In Figure 1, the percentage share of observations outside the range for the 
four variables lies between 8.6 and 22.4. 
2 Balke (2000) draws on threshold VAR. Some recent papers – such as Serwa (2012) and Hubrich and Tetlow 
(2014) – employ Markov-switching VAR. 
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linear relationships or stochastic volatility. Identifying the source of extreme events in the 
economy can help us understand the dynamics of extreme events, with consequences for the right 
policy response. 

 

Figure 1: Reduced-form Shocks (Absolute Value) in Standard Deviation Units from a Linear 
Model Estimated under Gaussianity  

 

 
 
To understand the roles of non-linearities in economic relationships and fat-tailed error 
distributions during stress events, this paper examines the two factors empirically. The aim is to 
extend the existing literature and account for all possible sources of non-linear behavior. So, the 
contribution of this study is to provide a simple enough framework that allows both the detection 
of all forms of non-linearity and the implementation of error distributions with fat tails. The 
modeling framework is built on a small-scale threshold vector autoregression (TVAR). The 
various specifications are estimated assuming either normally distributed or t-distributed reduced-
form shocks. The model is estimated on quarterly US data covering the period 1984Q1–2013Q4, 
including series describing conditions on financial or credit markets. The relatively simple 
structure of the model allows for estimation of all model parameters and generation of density 
forecasts that account completely for the parameters’ uncertainty.  
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The estimation results suggest that accounting for fat tails in error distributions is important for 
modeling stress events appropriately. Strong evidence of fat tails is found, and the finding is 
robust to the measure of financial/credit market conditions used. Modeling non-linearity, 
regardless of whether it arises in the form of changes in dynamic relationships between 
endogenous variables or in changes in shock volatility, does not improve the explanatory power of 
the model very much. The robustness with respect to the measure of credit/financial market 
conditions used is examined in order to respond to concerns that fat tails are a consequence of 
modeling credit/financial market conditions by one variable only and thus of omitting important 
channels of interaction between the credit/financial market and the real economy. 

The importance of accounting for non-linearity is suggested by an out-of-sample forecasting 
exercise. It turns out that allowing for regime changes and using a shock distribution with fat tails 
improve the density forecasting accuracy. A comparison of the forecasting performance of means 
and whole densities then suggests that the improvement in density forecasting accuracy is due to 
superior forecasts of the tails of density forecasts. Moreover, it turns out that the higher accuracy 
of density forecasts is not solely related to the recent Great Recession. 

Another contribution of the paper is that it provides some evidence on the issue of how data 
frequency affects the possibility of detecting non-linear behavior of macroeconomic time series. 
Ng and Wright (2013) suggest that quarterly frequency can be too low to answer the question on 
the roles of extreme shocks and non-linear propagation of shocks. To address the issue of data 
frequency, the model is also estimated on monthly data. Turning to higher frequency data does not 
change the qualitative picture, i.e., accounting for extreme shocks is an important step towards 
appropriate modeling of stress events. 

The rest of the paper is organized as follows. Section 2 presents the model, the estimation 
procedure, and the data set. In Section 3 the results and selected estimation issues are discussed. 
Finally, Section 4 concludes. Details of the estimation procedure, model comparison, data and 
convergence of the Gibbs sampler are presented in Appendixes A, B, C, and D, respectively. 
Detailed results relating to the out-of-sample forecasting performance exercises are presented in 
Appendixes E, F, and G. 

2. Model, Estimation, and Data 

Several recent papers have proposed ways of dealing with fat-tailed distributions in 
macroeconomic models. Cúrdia et al. (2014) work with a linearized DSGE model with shocks 
generated from a Student’s t-distribution. Importantly, they allow for changes in the volatility of 
shocks in the form of log volatilities following a random walk. Similarly, Chiu et al. (2014) 
employ a VAR model with t-distributed structural shocks with time-varying variance.  

In this paper, a threshold VAR model close to Balke (2000) is used. The use of the TVAR model 
allows us to consider a general form of non-linearity related to the shock propagation 
mechanism.3 Moreover, by allowing for regime switches in the error covariance matrix, it allows 

                                                           
3 The importance of modeling changes in dynamic relationships is strengthened by the fact that interest rates are 
currently close to the zero lower bound. 
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us to detect possible changes related to the volatility of shocks. In this regard, it resembles the 
approaches in Cúrdia et al. (2014) and Chiu et al. (2014). 

An alternative modeling approach could be based on models that are more flexible in terms of the 
number of regime changes. For example, time-varying parameter VAR as introduced in Primiceri 
(2005) represents a model which changes regime every period (the model parameters follow a 
random walk or geometric random walk). The modeling potential of a more flexible approach is 
examined in this paper by adding more regimes to the TVAR framework. Another approach that 
could be used to investigate our research questions involves smooth transition models. Working 
with quarterly/monthly data suggests rather abrupt changes in the investigated relationships, so 
models with an immediate regime change are preferred. Moreover, ignoring smooth transitions 
does not prevent detection of regime change in the TVAR model, hence a more parsimonious 
model is employed. Finally, the Markov-switching approach could be considered. Here, we prefer 
to work with an explicit threshold variable so that we can interpret the regimes. 

The set of endogenous variables includes a variable representing financial /credit markets. While 
having a single variable to represent the financial market is a strong simplification, it can still 
provide some guidance on the interaction between the real economy and financial markets. The 
situation would probably be more difficult within the family of DSGE models, which still do not 
provide a consensual approach to incorporating financial markets.4 In addition, complex models 
usually need to be linearized, which prevents the investigation of non-linearities. More discussion 
on whether one variable suffices to capture credit/financial markets can be found in Section 2.3. 

 

2.1 Model 

 
Let’s consider the following threshold vector autoregression with R  regimes: 

 

1
1

R
TR

t t i i t d i t
i

y x B I r y r u 


      , (1)

 

where  M
ttt yyy ,,1   is a row vector of M endogenous variables, , 11, , ,t p t t px y y      is a 

row vector of length 1 Mp , and iB  are  1 Mp M   matrices of coefficients, Ri ,,1 . The 
function  I  indicates whether the lagged value of the threshold variable, TR

dty  , belongs in the 
interval given by 1ir  and ir . The delay parameter  0,,2,1 dd   suggests that the threshold 
variable reflects the regime with a lag.  
The reduced-form residuals, tu , are independent and identically distributed either normally with 
zero mean and an MM   symmetric positive semi-definite covariance matrix i  dependent on 
the regime: 

 

  












R

i
ii

TR
dtit ryrINu

1
1,0~ , (2)

                                                           
4 Cúrdia et al. (2014) draw on Smets and Wouters’ DSGE model, which does not incorporate a financial sector. 
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or as a multivariate t-distribution with zero mean, an MM   symmetric positive semi-definite 
scale matrix i  dependent on the regime, and n degrees of freedom: 

 

  










 nryrIMTu

R

i
ii

TR
dtit ,,0~

1
1 . (3)

 
It can be shown (see Chahad and Ferroni, 2014, Appendix A) that a random variable distributed as 
a multivariate t-distribution can be viewed as a normally distributed variable with stochastic 
variance driven by a gamma distributed random variable. For the reduced-form residuals in (3) it 
holds that if 

 









n

n
t

2
,

2
~  (4)

and  

  













R

i
ii

TR
dtitt ryrIMNu

1
1

1,0~  , (5)

 
then the likelihood of (1) and (3) equals the likelihood of (1), (4), and (5). Note that volatility 
changes driven by the gamma distribution are of a different kind to the stochastic volatility 
usually employed in the literature, because there is no persistence in the process t . Persistent 
changes in shock volatility are accounted for by changes in the matrix i . Furthermore, the time-
varying error covariance matrix in (5) reflects both changes in the impact of a shock on the 
endogenous variables and changes in the volatility of shocks. The two sources of changes are not 
distinguished, as identification of structural shocks is not necessary.  

The assumption of one degree of freedom parameter for all shocks may be viewed as too strong. 
Note that Cúrdia et al. (2014) model shock distributions separately and therefore they can discuss 
the fat tails of a specific shock. The approach of this paper follows Chahad and Ferroni (2014), 
with shocks modeled jointly as multivariate t-distributed vectors. Moreover, the reduced-form 
residuals in Figure 1 suggest fat tails for shocks to all variables. 

 

2.2 Bayesian Inference 

For inference, the Bayesian approach is taken. The joint posterior distribution is intractable and so 
MCMC methods are employed to draw from conditional distributions and estimate the marginal 
distributions of subsets of parameters. The crucial step is to extend the Gibbs sampler used to 
estimate the threshold vector autoregressions for the error distribution exhibiting fat tails. The 
TVAR model with normally distributed errors is discussed in Chen and Lee (1995) and Koop and 
Potter (2003), while the linear VAR with multivariate t-distributed shocks is examined in Chahad 
and Ferroni (2014). The Gibbs sampler combined with a Metropolis step and an adaptive rejection 
sampling algorithm are used in the estimation of the model. Adaptive rejection sampling as 
introduced in Gilks and Wild (1992) is employed. Overall, 150,000 iterations of the Gibbs 



8   Michal Franta  

sampler are carried out, with the first 50,000 used as a “burn-in” as they are presumably not from 
the target distribution. From the rest of the iterations, every tenth one is used for inference in order 
to avoid autocorrelation of draws. For details see Appendix A.2. Convergence diagnostics are 
presented in Appendix D. 

For the threshold BVAR model (1) and (2) the independent Normal-inverse Wishart prior is 
assumed: 

 
 PRPR

i VN ,~   and  TRPR
i TiW ,~             Ri ,...,1 , (6)

 
where i  is a vector created by stacking the columns of iB . The prior on AR parameters iB  is 
specified as a Minnesota-style prior (Litterman, 1979). The prior distribution on the error 
covariance matrix i  follows an inverse Wishart distribution. The scale matrix PR  is an OLS 
estimate of the variance of a linear VAR estimated on a training sample. The estimate is 
multiplied by the length of the training sample to retain the interpretation of the scale matrix as 
the sum of squared residuals. The number of degrees of freedom is also set to the length of the 
training sample. The prior distribution for threshold value ir  and delay parameter d  is Beta and 
multinomial, respectively, on the admissible parameter values. The effect of the priors on the 
results is discussed in Section 3.1. 

The threshold BVAR model with fat tails (1), (4), and (5) follows the same prior for AR 
parameters iB , the error covariance matrix i , the threshold value ir , and the delay parameter d . 
The prior on the degrees of freedom of the multivariate t distributed shocks n  (or equivalently the 
parameter of the gamma distribution assumed for the stochastic volatility component) is such that  

 
   2,202/ npr . (7)

 
So, the prior allocates substantial prior weight to normal distribution of shocks. Finally, note that 
the chosen priors imply no difference in the dynamic relationships and the volatility of shocks 
across regimes. For details on the specification of the priors see Appendix A.1. 

Density forecasts are simulated such that within each round of the Gibbs sampler an iterated 
forecast for up to seven quarters is computed based on the current draw of the parameter vector. 
More precisely, for a given draw of AR parameters, a draw from the error distribution with 
parameters obtained in the Gibbs iteration is taken to generate the forecast one quarter ahead. The 
next draw from the same error distribution yields the forecast two quarters ahead, and so on. A 
total of 50,000 iterations from the Gibbs sampler after another 50,000 as a “burn-in” are used to 
simulate the density forecasts. 

 

2.3 Data 

The models are estimated on US quarterly data covering the period 1984–2013 (see Appendix C 
for graphs of the time series). In order to reduce the number of possible regimes, we restrict our 
data set to the beginning of the Great Moderation, as it is usually viewed as a regime change 
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associated with a decrease in the observed volatility of macroeconomic variables. However, as a 
robustness check, an extended sample starting in 1964 is also used for the estimation. 

The real economy is represented by output (seasonally adjusted quarter-on-quarter change in real 
GDP), inflation (seasonally adjusted quarter-on-quarter change in CPI), and the short-term interest 
rate (the federal funds rate). The model is complemented with a variable representing the credit 
conditions. The set-up of the empirical exercise is very close to the analysis presented in Balke 
(2000). So, in the benchmark estimation, the credit conditions are represented by the BAA spread, 
i.e., the spread between the BAA-rated corporate bond yield and the 10-year Treasury constant 
maturity rate. 

As a robustness check, the first difference of the mix of bank loans and commercial paper in total 
firm external finance (the Mix variable) is employed. The Mix variable is the ratio of the total 
amount of loans in the liabilities of non-financial corporate and non-corporate firms to the sum of 
the total amount of loans plus the amount of commercial paper issued by non-financial corporate 
firms. Such a measure is also considered in Balke (2000) and Ferraresi et al. (2013). To broaden 
our analysis from the credit markets to the financial markets in general, a financial conditions 
index (FCI) is used. The FCI is a real-time indicator extracted from a broad set of time series 
describing the money, debt, and equity markets and the leverage of financial intermediaries 
(Brave and Butters, 2012).5 

Our efforts to demonstrate the robustness of the results with respect to the measure of the 
credit/financial market variable stem from the fact that we are forced to use a small-scale model 
and at the same time to capture the very complex relationship between the financial markets and 
the macroeconomy. Even the small-scale model used is heavily parameterized and the problem of 
overfitting arises. Therefore, only one variable representing the credit/financial markets can be 
used at a time. In this regard, the FCI includes general information from the financial markets, as 
it is basically a factor extracted from a broad set of financial variables. 

Following Balke (2000) the threshold variables are smoothed versions of the corresponding credit 
market conditions measures – we use the two-quarter moving average for the BAA spread and the 
six-quarter moving average for the Mix variable, and the FCI is not smoothed. Smoothing is 
employed to avoid frequent changes in regimes and regimes lasting only a quarter. The threshold 
variables are presented in Figure 2. 

  

                                                           
5 Data sources: CPI, GDP, and the federal funds rate were downloaded from the IMF IFS database. The BAA 
spread, the components of the Mix variable, and the FCI were taken from FRED – the Federal Reserve Bank of 
St. Louis Database at http://research.stlouisfed.org/fred2/. 



10   Michal Franta  

Figure 2: Threshold Variables and Their Means 

 

 
 
Ng and Wright (2013) touch upon the possible influence of the data frequency on the possibility 
of detecting non-linear behavior. They mention Stock and Watson (2012), who use a dynamic 
factor model estimated on quarterly data and find no support for non-linear behavior or structural 
breaks. Extreme financial and uncertainty shocks seem to be the drivers of extreme events in 2008 
within the framework of Stock and Watson (2012). On the other hand, working with a six-variable 
VAR estimated on monthly data, Sims (2012) suggests some role for non-linearity in the shock 
propagation mechanism. To contribute to the discussion, we also estimate the benchmark model 
on monthly data (1984M1–2014M9). Industrial production (seasonally adjusted annualized 
month-on-month change) is employed as an indicator of the performance of the real economy. 
The rest of the endogenous variables – inflation (seasonally adjusted annualized month-on-month 
change), the federal funds rate, and the BAA spread – remain the same. Note that the previous 
literature dealing with t-distributed errors in VAR models employed monthly data (Chiu et al., 
2014, and Chahad and Ferroni, 2014). Cúrdia et al. (2014) estimate Smets and Wouters’ DSGE 
model on quarterly data. The graphs of monthly data are presented in Appendix C. 

3. Results 

First, the type of shock distributions and the presence of regime switches are examined in terms of 
data fit. Then, the fat-tailedness is discussed and changes in the results with respect to data 
frequency are examined. Robustness issues are discussed in Subsection 3.1. Finally, the out-of-
sample forecasting performance of the models is examined in Subsection 3.2.  

The comparison of the specifications is based on the deviance information criterion (DIC), which 
takes into account data the fit along with the number of model parameters. The DIC is a 
generalization of the Akaike information criterion. Its definition and the computation procedure 
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are discussed in Appendix B. Note that a model with a lower DIC value is preferable. Based on 
the criterion, the number of lags is chosen to be equal to four.6 

Table 1 shows the DIC values for the model of quarterly data employing in turn the three 
measures of the credit/financial market conditions and different assumptions about the error 
distribution. 

 

Table 1: Deviance Information Criterion (quarterly data) 

 BAA spread Mix variable FCI 
 Number of regimes Number of regimes Number of regimes 
Shocks: 1 2 1 2 1 2 

Normal 666.26 1258.36 -154.30 -190.61 744.37 701.13 
t-dist. 476.23 519.17 -337.05 -288.22 530.95 639.90 

 
 

The table demonstrates that specifications with t-distributed errors are preferable regardless of 
whether or not a regime switch is assumed. So, within the family of linear models the usual 
assumption of normality is not favored by the data, in line with the above-mentioned literature. In 
addition, neither allowing for a regime switch in the shock propagation mechanism nor allowing 
for a change in the volatility of shocks leads to a preference for normally distributed errors. An 
important role of non-linearities is detected when the out-of-sample fit of the model specifications 
is discussed below.  

For the model specifications with the BAA spread, allowing for non-linearity worsens the model 
fit for both types of error distributions. The situation is different if the Mix variable and the FCI 
are employed. When normal errors are assumed, allowing for threshold behavior provides a 
superior data fit. This is not the case for t-distributed errors. Thus, restricting attention to normal 
errors can result in a preference for a non-linear model, but the preferable approach is to allow for 
rare and extreme shocks in a linear model.  

The preference for t-distributed shocks over all specifications provides robust evidence of fat tails 
of the error distributions. The specification with the Mix variable and the FCI suggests some role 
of non-linearities at least in the model with normal errors. Here, the limits of the methodology 
may have been reached. As already mentioned, having just one variable to represent the financial 
market may simply be insufficient to capture all the feedback effects between the real economy 
and the credit/financial markets. On the other hand, the small-scale model still seems to be an 
appropriate approach to avoid overfitting.  

 

  

                                                           
6 The choice of the number of lags is carried out for the benchmark specification with one regime and normally 
distributed errors. The DIC suggests four lags. This number of lags is used in all the other specifications. 
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Figure 3: Posterior Distribution of the Diagonal Elements of   in Two Regimes  

 

 
 
Note: The specification with the Mix variable and normally distributed errors is used.  
 
 
The superior data fit of the model with normally distributed errors and regime switch for the 
specification with the Mix variable and the FCI is driven mainly by the possibility of volatility 
change. Figure 3 shows the posterior distributions of the diagonal elements of the error covariance 
matrix  . It turns out that the volatility of shocks is higher in the second regime than in the first. 
However, the posterior distribution of the AR parameters also exhibits a change between the two 
regimes, though not a significant one. 

 

Table 2: Deviance Information Criterion (quarterly data, subsample 1984Q1–2008Q2) 

 BAA spread Mix variable FCI 
 Number of regimes Number of regimes Number of regimes 
Shocks: 1 2 1 2 1 2 

Normal 311.99 414.67 -311.60 -259.90 402.75 544.23 
t-dist. 301.53 397.79 -319.23 -256.64 396.86 521.64 

 
An important aspect of the above discussion is how much the results are driven by the period the 
data set covers. Table 2 reports the DIC for the same set of specifications estimated on the sub-set 
excluding the Great Recession (1984Q1–2008Q2). The preference for shock distributions with fat 
tails relative to normally distributed shocks is weakened. Still, the main conclusion is that the 
specification with one regime and t-distributed shocks is superior. However, the linear model with 
normal errors fits the data better than models allowing for regime switch regardless of the 
assumption about the error distribution. The Great Recession therefore results in a greater need for 
fat tails in shock distributions.  
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Next, focusing on the Great Moderation, the importance of accounting for changes in volatility 
may be weakened. As another robustness check, the benchmark specification with the BAA 
spread is estimated on the data sample starting in 1964Q1 for both types of error distribution and 
with one or two regimes. Table 3 shows that extending the estimation sample to include a period 
of high volatility of shocks does not alter the conclusions about the importance of fat-tailed shock 
distributions. The inclusion of a period with a significant volatility change does not alter the result 
that the model that allows for change in volatility is not preferred according to the DIC. 

 

Table 3: DIC, Extended Sample (1964Q1–2013Q4) 

 Number of regimes 
Shocks: 1 2 

Normal 1406.00 1769.97 
t-dist. 1298.43 1329.80 

Note: The BAA spread is used as a measure of credit 
market conditions.  

 
So, the data favor a fat-tailed distribution of shocks. The natural question follows: How fat are the 
fat tails? Looking at the posterior distribution of the degrees of freedom parameter n, strong 
evidence is found for fat-tailedness. The evidence is weaker for the specification with the BAA 
spread and one regime. Table 4 reports the mean and 90% confidence band of the posterior 
distribution. 

Table 4: Posterior Mean of Degrees of Freedom 

Number of regimes: BAA spread Mix variable FCI 
1 20.98 5.29 5.10 

 (5.01, 99.34) (5.00, 5.49) (5.00, 5.27) 
2 10.17 5.12 5.11 

  (5.01, 41.14) (5.00, 5.34) (5.00, 5.30) 
Note: 90% confidence bands reported in brackets.   

 
Cúrdia et al. (2014) find that allowing for stochastic volatility leads to a dramatic increase in the 
degrees of freedom for monetary policy shocks. In the present framework, structural shocks are 
not identified. However, structural shocks are a linear combination of reduced-form shocks and 
thus one can discuss the propensity to produce fat-tail events with the estimated degrees of 
freedom for reduced-form shocks. Importantly, for the BAA spread and the Mix variable the 
estimated means of the degrees of freedom decrease if some non-linearity is allowed.7 It seems 
that accounting for changes in volatility does not reduce the need for fat tails.  

Responding to the above discussion on the data sampling frequency and the possibility of 
detecting non-linear behavior, we estimate the model on monthly data (we restrict our attention to 
the specification with the BAA spread). The DIC estimates suggest that the linear model with t-
distributed errors is superior if quarterly data are used for the estimation (see Table 5). 

                                                           
7 Confidence bands suggest that the difference in degrees of freedom between the models with one and two 
regimes is not considerable. 



14   Michal Franta  

Furthermore, it turns out that the performance of specifications with fat-tailed shock distributions 
in terms of data fit is closer to that of specifications with normally distributed errors. The 
possibility of regime switches does not add explanatory power to the model. 

 

Table 5: Deviance Information Criterion (monthly data) 

 Number of regimes 
Shocks: 1 2 

Normal 1298.40 1322.11 
t-dist. 1222.71 1320.28 

Note: The BAA spread is used as a measure of credit market 
conditions.  

 

Table 6: Threshold Value in Models with Two Regimes 

 Threshold variable function of: 
Shocks: BAA spread Mix variable FCI 

Normal 2.93 0.0017 0.15 
 (2.87, 3.07 ) (0.0015, 0.0018) (0.09, 0.19) 

t-dist. 2.92 0.0017 0.09 
  ( 2.87, 3.05) (0.0014, 0.0018 ) (-0.01, 0.18 ) 
Note: 90% confidence bands in brackets. 

 
 

Regime switches can be characterized by threshold values. Table 6 shows that the mean of the 
posterior distribution of the threshold is not significantly affected by the assumption about the 
error distribution. The estimated regimes differ according to the threshold variable employed – see 
Figure 4 for regimes according to the specification with normally distributed errors. The 
specification with the BAA spread yields “periods of stress” related to the Great Recession and its 
aftermath. Next, the period relating to the financial and accounting scandals of Enron and Arthur 
Andersen and their aftermath is also indicated as a stress event. The BAA spread relates to the 
external finance premium of firms and also to possible flight-to-quality dynamics. The Mix 
variable is linked strictly to the supply of loans. The “extreme” episodes defined by the threshold 
for the Mix variable in a sense follow the episodes identified by the BAA spread. A broader 
measure of the conditions on the financial market, the FCI index, implies that in addition to the 
Great Recession, the “stress events” include, for example, Black Monday in 1987Q3. 
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Figure 4: Threshold Variables, Estimated Thresholds, and Implied Regimes 

 

 
 

3.1 Robustness Issues 

There are several robustness issues that are worth discussing. First, the assumption of two regimes 
imposes the condition that volatility and the shock propagation mechanism can change only once 
and at the same time. Therefore, for the specification with the BAA spread, the model is estimated 
assuming three regimes. The results are presented in Table 7. It turns out that adding a regime 
worsens the data fit. Moreover, the specification with three regimes and t-distributed shocks is 
still preferable to specifications with normally distributed errors. 

 
 

Table 7: Deviance Information Criterion, Three Regimes 

  Number of regimes  
  1 2 3 
Shocks Normal 666.26 1258.36 1319.29 
  t 476.23 519.17 597.00 
Note: The BAA spread is used as a measure of credit market 

conditions.  
 
 

Despite the computational burden, which reduces the time feasibility of the estimation procedure, 
adding a regime can provide some guidance on whether more flexible models can answer the 
research questions. Allowing for more regimes, however, does not add explanatory power to the 
model, so models with more regimes (e.g. TVP-VAR) seem not to be useful. 
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Figure 5: The Prior Degrees of Freedom for the Error Covariance Matrix and the 
Corresponding DIC and Posterior Mean of the Degrees of Freedom of the 
Multivariate t-Distribution 

 

 
Note: The specification with the BAA spread is used. 
 
 

The next robustness check concerns the influence of the prior on the error covariance matrix i  
on the estimated measure of fat-tailedness represented by degrees of freedom n. Figure 5 reports 
the DIC (left-hand scale) and the posterior mean of the degrees of freedom (right-hand scale) from 
the specification with the BAA spread, one or two regimes, and multivariate t-distributed errors.8 
The graphs show that the minimum DIC value is attained around 40. The preferred value of the 
parameter according to the DIC is very close to the one set for the prior – a training sample size 
equal to 40. More importantly, the posterior mean of the degrees of freedom covers values from 
those suggesting fat tails (less than 10) to those representing a multivariate t-distribution very 
close to the multivariate normal distribution (more than 50). The shift toward multivariate normal 
happens with higher prior degrees of freedom, representing a tighter prior on the error covariance 
matrix i . However, regardless of the size of the prior, the specification with one regime is 
always preferable according to the DIC. 

  

                                                           
8 The model is estimated for 7,500 draws, with the first 2,500 discarded. 
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Figure 6: The Prior on the Beta Distribution for the Threshold Value and the Corresponding 

DIC and the Posterior Mean of the Threshold Value 

 
 

 
 
The final robustness issue relates to the prior on the threshold value r. The underlying point of this 
exercise is to examine how much the results are driven by a low number of observations in a 
regime. A lower number of observations in a regime leads to fewer price estimates and to 
estimates that are driven more by the priors. Moreover, a low number of observations in a regime 
means overfitting. Tightening the prior on the threshold in the direction of the center of the 
interval ensures enough observations in each regime. So, Figure 6 shows the relationship between 
the shape parameter of the beta prior on the threshold value (1 represents a uniform distribution, 
20 represents a very tight prior) and the DIC and the posterior mean of the threshold. The number 
of observations in a low-number-of-observations regime is 12 to 20. Not surprisingly, the 
posterior mean is closer to the mean of the threshold variable (2.29) if the prior is tighter. Next, 
according to the DIC a higher shape parameter on the beta distribution is preferred in the 
specification with t-distributed errors. The opposite applies if normal errors are assumed. 
However, the relative DIC values and thus the resulting preference for the model with t-
distributed errors remain unchanged. 

 

3.2 Out-of-sample Forecasting Performance 

The forecasting performance of the model is assessed along two dimensions. First, a standard 
forecasting performance exercise based on the root-mean-square errors (RMSE) is carried out. 
Second, the accuracy of the density forecasts is discussed. The motivation for the density 
forecasting performance examination draws on the idea that during extreme events, non-linearity 
and fat tails of shock distributions can play a significant role. Therefore, the accuracy added by 
models with regime switch and t-distributed errors should be reflected in more precise estimation 
of the tails of the density forecasts. Focusing on the forecasting performance of means or medians 
can hide the value added of forecasting based on non-linear models with non-normal errors. 

0 5 10 15 20
1200

1250

1300
Normal errors

D
IC

 

 

0 5 10 15 20
2.8

3

3.2

po
st

 m
ea

n 
of

 t
hr

es
ho

ld
 v

ar

prior of threshold var

DIC

post mean of threshold var

0 5 10 15 20
510

520

530
t-dist. errors

D
IC

 

 

0 5 10 15 20
2.8

3

3.2

po
st

 m
ea

n 
of

 t
hr

es
ho

ld
 v

ar

prior of threshold var

DIC

post mean of threshold var



18   Michal Franta  

The evaluation period is 2002Q4–2013Q4. So, for each quarter from that period the model is 
estimated on the data set starting with 1984Q1 and ending with that quarter. Iterated density 
forecasts for up to seven quarters ahead are constructed and compared with the ex-post observed 
data. So, one-period-ahead density forecasts are compared with 45 ex-post observed values, two-
period-ahead density forecasts with 44 ex-post observed values, and so on. 

Tables E1–E3 in Appendix E report the RMSE for the models with three variables representing 
credit/financial markets. No clear-cut conclusion can be made, as for different endogenous 
variables and different forecasting horizons the preferred model specification differs as well. 
However, it turns out that accounting for non-linearity in the form of a regime change does not 
add to the forecasting performance of the mean forecasts. For a majority of the variables and 
forecasting horizons, the specification with one regime is preferred in terms of the RMSE. In 
addition, for the specification with the FCI, only models with t-distributed errors provide superior 
median forecasting performance. For specifications with the FCI, allowing for fat tails leads to 
coefficient estimates that are more useful for forecasting the central tendency of the endogenous 
variables. Finally, comparing the RMSE of the models with the AR(1) model for each variable 
suggests superior forecasting performance for variants of the TVAR model (Table E4).  

The accuracy of the density forecasts is measured using the Kullback-Leibler Information 
Criterion (KLIC) introduced in Vuong (1989) as a way of measuring the distance between two 
densities. Minimization of the KLIC can be reformulated as maximization of the expected 
logarithmic score: 

 ,log t h t t hE f x    , 

 
which is estimated by the average logarithmic score: 

 

 



At

httht xf
N ,ln
1

, 

 

where tx  denotes an ex-post realization of a variable and thtf , is the simulated posterior density 

of that variable computed at time t at forecasting horizon h. 

Tables F1–F3 in Appendix F show the average logarithmic scores. They suggest that accounting 
for non-linearity and shock distributions with fat tails improves density forecasts. This is 
especially striking when compared with the RMSE. For the model specifications with the BAA 
spread and the Mix variable, the linear model with normally distributed errors is superior in only 
two cases (out of the 28 cases, as seven forecasting horizons for four variables are considered). If 
the RMSE is considered, the linear model with normally distributed errors is preferred in 
approximately one half of cases. So, it can be concluded that fat tails and regime switches 
improve the forecasts of density tails.  

Importantly, the results relating to forecasting performance are not driven by the Great Recession. 
Restricting the evaluation period to the sub-period 2002Q4–2008Q2 shifts the preference even 
more in the direction of non-linear models and models with t-distributed shocks. The average 
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logarithmic scores do not suggest superiority of the linear model with normal errors in any case 
(see Tables G1–G3 in Appendix G). 

The importance of non-linearities and fat tails in density forecasting is illustrated in Figure 7. The 
figure shows the density forecasts as if they were estimated using the data up to 2008Q2. It shows 
the median and centered 68% and 95% of the density forecasts. In addition, ex-post observed data 
are included. The Great Recession represents an ex-ante impossible event from the point of view 
of the linear model with normally distributed errors (shades of yellow). On the other hand, based 
on the model with two regimes and t-distributed shocks, the Great Recession represents a low 
probability event (red curves). For example, the ex-post observed output growth is contained by 
the centered 95% of the output growth density forecast.  

Figure 7: Density Forecasts From Two Model Specifications Estimated on 1984Q1–2008Q2 

 

 
 
Note: The BAA spread is used as a measure of credit market conditions. The red curves indicate the 

median and the centered 68% and 95% of the density forecasts of the model with t-distributed errors 
and two regimes. For the model with normal shocks and one regime, the median is denoted by the 
black dot-dash line and the centered 68% and 95% of the density forecasts are indicated by dark and 
light yellow. Observed data are denoted by a solid black line. 

 
 
Density forecasts for the Federal Funds Rate presented in Figure 7 do not account for the zero 
lower bound because the influence of the bound is presumably similar regardless the model 
specification. However, the way how to deal with the zero lower bound in the estimation of 
density forecasts based on vector autoregressions and possible effects related to ignoring the 
bound are discussed in Franta et al. (2014). 
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4. Conclusions  

This paper contributes to our understanding of the dynamics of extreme events in the economy. It 
attempts to provide some empirical evidence on the roles of rare and extreme shocks and non-
linear behavior of economic variables. The empirical evidence draws on US macroeconomic 
variables that are able to capture feedback effects between the real economy and financial 
markets. Such feedback effects can strengthen an initial shock regardless of whether the shock 
originates in the financial market or in the real economy. Another possibility is that the shock 
itself is of an extreme size. 

The model used to answer the question posed is simple enough to be completely estimated, yet 
flexible enough to detect non-linear behavior either in the dynamic relationships between the 
variables or in changes in the error covariance matrix. Based on the estimated parameters and 
measures of model fit, it turns out that the important finding of the model is that it is preferable to 
work with distributions that allow for fat tails. Modeling non-linearities does not necessarily help 
explain the data better. The importance of accounting for non-linearity is suggested by an 
examination of the out-of-sample fit. It turns out that allowing for regime changes and shock 
distributions with fat tails improves the density forecasting accuracy. Such modeling features 
result in superior forecasts of the tails of density forecasts. Moreover, the improvement in the 
accuracy of density forecasts is not related solely to the recent Great Recession. 

Appropriate modeling of stress events is crucial for the design of financial sector regulation. If 
stress events affecting financial markets are a product of a rare and extreme shock, it is difficult to 
pre-empt the shock and regulation should be directed at dealing with the consequences of such 
shocks. On the other hand, if a stress event is mainly due to non-linearities arising during the 
stress period, the design of the system can be improved to avoid feedback effects leading to non-
linearities. The findings presented in this paper provide support for a regulatory approach that 
prepares the system for unavoidable extreme shocks. Such regulation should create buffers that 
can be used when an extreme shock hits the macroeconomy. 
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Appendix A: Bayesian Estimation 

A.1 Priors  

For AR parameters iB  and the covariance/scale matrix i  the independent Normal-inverse 
Wishart prior is assumed: 

  
 PRPR

i VN ,~   and  TRPR
i TiW ,~             Ri ,...,1 , (A1)

 
where i  is a vector created by stacking the columns of iB .   110  MpM

PR
i  and PR

iV  are set 

such that the diagonal element equals 2
0 / l  for the coefficient on the lags of the LHS variable at 

lag l. The prior variance is set to 2 2 2
0 1 , ,/ ( )i m i nl    for the coefficients on the lags of variables 

different from the LHS variable  m n  and 0 2   for the coefficients on the intercepts. 2
,i m  is 

the standard error of an AR(1) process for a particular variable m estimated on the whole sample. 

The hyperparameters are set to 2.00  , 5.01  , and 5
2 10 . The specification of the prior 

variance of the AR parameters and the values of the hyperparameter are taken from Canova 
(2007).  

The prior on the error covariance/scale matrix i  follows an inverse Wishart distribution with the 
scale matrix proportional to the OLS estimate of the error covariance matrix from the linear VAR 
on the training sample (1973Q1–1983Q1). The estimate is multiplied by the number of 
observations available for estimation 40TRT . The number of degrees of freedom is also set to 

TRT . The motivation for such choice of degrees of freedom draws on the form of the conditional 
posterior of the error covariance matrix conditional on iB : 
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where *

i  is the maximum likelihood estimate of the error covariance matrix conditional on iB . 

The posterior is a weighted average of the prior and the maximum likelihood estimate. The 
weights are chosen to reflect the sample size. The priors on the AR parameters and the scale 
matrix are independent. Hence, the prior on the AR parameters allows for different shrinking of 
the coefficients at lags of various dependent variables. 

The prior for threshold values ir , 1,..., 1i R   is considered to follow a beta distribution: 

 

 21,~ ir                 Ri ,...,1 , (A3) 

 
defined on the interval  9.01.00 ,   qRq rrrr , where qr  denotes the quantile of the threshold 

variable. The parameters of the beta distribution equal 10, which represents a tight prior in the 
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sense of avoiding a posterior close to the edges of the interval. The model specifications estimated 
are heavily parameterized and this tight prior is intended to avoid overfitting, i.e., to ensure 
enough observations in regimes adjacent to the edge of the interval for the threshold value.  

The prior for the delay parameter follows a multinomial distribution with probability of a 
particular delay equal to 01/ d . The prior of the degrees of freedom parameter is such that  

 
   2,202/ npr . (A4)

 
So, the prior allocates substantial prior weight to normal distribution of shocks. Finally, note that 
the chosen priors imply no difference in the dynamic relationship and volatility across regimes. 

 

A.2 Gibbs Sampler 

In this section the Gibbs sampler for the model with multivariate t-distributed errors is described. 
The case of normally distributed errors is analogous; the only difference lies in skipping the parts 
that take draws of stochastic volatility t  and degrees of freedom n. 

As noted in the introduction, the reduced-form errors tu  distributed according to the multivariate 
t-distribution can be viewed as multivariate normally distributed with zero mean and variance 

1
i i

   in a regime i. The likelihood of the observed data is then 
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where iT  refers to the size of each regime and i  is a diagonal matrix consisting of all t  in a 
particular regime i. 

 The posterior distribution of the stochastic component of the reduced-form error volatility, t , 
conditional on the AR parameters, the scale matrix, and the degrees of freedom parameter, 
follows a gamma distribution – see a similar formula in Chahad and Ferroni (2014): 
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Next, the posterior distribution of the AR parameters and the scale matrix for each regime 
(conditional on the rest of the parameter set) follow the same family of distributions as the prior 
distributions of the parameter concerned. The conditional posterior distributions of the AR 
parameters are multivariate normal with mean  
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and variance  
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The conditional posterior of the scale matrix for regime i follows the inverse Wishart distribution 
with the following scale matrix and degrees of freedom 
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The conditional posterior distribution of the degrees of freedom parameter cannot be expressed 
analytically and thus the adaptive rejection sampling algorithm introduced in Gilks and Wild 
(1992) is employed. The point of the algorithm is to approximate a log-concave function by 
piecewise linear upper bounds in the log-linear space and then take a random draw from that 
approximation. The draw is accepted with a probability related to the difference between the 
original function and its approximation. If the draw is rejected, the approximation of the function 
is refined. The log-concave conditional probability density function for the degrees of freedom 
parameter is as follows:  
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The interval of the possible values of parameter n is restricted to  100,5 . The lower bound 
ensures finite variance of the reduced-form shocks and the maximum value of 100 makes the 
difference between the normality and non-normality assumption on the residuals 
indistinguishable.  

Draws from the conditional posterior distribution of the threshold are constructed as in Koop and 
Potter (2003). A Metropolis algorithm is used – a random draw of a proposed value for the 
threshold is drawn from a uniform distribution over the domain for the threshold values and the 
log of the conditional posterior probability of this value is compared with the log of the 
conditional posterior probability of the original value. The proposed value is accepted with a 
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probability given by the difference between the two logs (with a maximum equal to unity). The 
draws of the proposed values are taken such that each regime contains at least 11 observations. 
This is to ensure that in each regime the posterior is driven by the data and not solely by the prior. 
The posterior probability is computed as the product of the prior and the observed data likelihood 
(conditional on the model parameters and the latent stochastic volatility state). The number of 
tries to find a new draw of the threshold is set such that the acceptance ratio is in the interval 
 4.0,2.0 . 

The conditional posterior of the delay parameter d follows a multinomial distribution with 
probability 
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To summarize, the Gibbs sampler involves the following steps: 

(0) The sampler is initialized by random draws from prior distributions for parameters d, ir , 

and n. AR parameters iB  and error covariance matrices i  are initialized by the relevant 

OLS estimates based on the whole data set.  

(1) Given the data and the values of all the other parameters  , , , ,i i iB r n d  a random draw of 

 1,...,
T

T    is taken from the Gamma distribution stated in (A6). 

(2) Given the data, the values of all the other parameters  , , ,i ir n d , and the unobserved 

stochastic volatility component i , a random draw of iB  for Ri ,...,1  is taken from the 

Normal distribution with mean (A7) and variance (A8).  

(3) Given the data, the values of all the other parameters  , , ,i iB r n d , and the unobserved 

stochastic volatility component i , a random draw of i  is taken from the inverse 

Wishart distribution with the scale matrix and degrees of freedom stated in (A9). 

(4) Given the data, the values of all the other parameters  , , ,i i iB r d , and the unobserved 

stochastic volatility component i , a random draw of the degrees of freedom parameter n 

is obtained using an adaptive rejection sampling algorithm applied on probability density 
function (A10). 

(5) Given the data, the values of all the other parameters  , , ,i iB n d , and the unobserved 

stochastic volatility component i , a random draw of the threshold value is obtained 

using independent Metropolis Hastings sampling with a uniform jumping distribution 
defined on a range for the threshold values. The maximum number of tries for accepting a 
proposed value is adjusted to get the desired acceptance ratio.  
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(6) Given the data, the values of all the other parameters  , , ,i i iB r n , and the unobserved 

stochastic volatility component i , a random draw of the delay parameter d is taken from 

the multinomial distribution with probabilities defined in (A11) for 01,...,d d . 

(7) Steps (1) to (6) are repeated 150,000 times, the first 50,000 draws of the parameter set are 
discarded and the rest are used for inference. 
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Appendix B: Model Selection  

Here, the procedure for models with t-distributed errors is described, because in the case of 
normal errors the procedure is straightforward. We exploit the fact that the likelihood of the 
observed data of the model is the same regardless of whether the reduced-form residuals are 
viewed as distributed normally with stochastic volatility or distributed according to the 
multivariate t-distribution. The computation of the likelihood of a model with stochastic errors can 
be a difficult task because the system contains a latent state ( t ). Therefore, we view the model 
as a threshold vector autoregression with t-distributed errors and compute the likelihood of the 
observed data according to the following formula:  
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which can be viewed as the integrated likelihood with respect to the latent state i . The AR 
coefficients and the scale matrix in the last term relate to the regime for period t. 

The model selection is based on the deviance information criterion (DIC) introduced in 
Spiegelhalter et al. (2002): 

DpDDIC  , (B2)

where D  measures the goodness of fit and can be approximated by 
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The parameter G denotes the number of Gibbs iterations. The approximation can be computed 
within the Gibbs sampler. For each iteration, the likelihood is evaluated at the draw of the 
parameter set. 

The parameter Dp  represents the model complexity. It is a measure of the number of effective 

parameters in the model. It can be approximated by 
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where   for a parameter P denotes the mean computed using Gibbs draws of the parameter. 

A possible limitation of the DIC is that it tends to select over-fitted models. However, this seems 
not to be the case in the presented setting, as more heavily parametrized models are not preferred 
by the DIC. The conclusion about the preference for a linear model with t-distributed errors is not 
affected by the choice of model selection criterion.9  

                                                           
9 A criterion that responds to the over-fitting problem with the DIC is introduced in Aldo (2007). 
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Appendix C: Data 

Figure C1: Quarterly Data, 1984Q1–2013Q4 

 

 
 

Figure C2: Monthly Data, 1984M1–2014M9 
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Appendix D: Convergence Diagnostics 

Convergence diagnostics for the specification with the BAA spread, t-distributed errors, and two 
regimes is presented; other specifications give similar results in this respect and are available upon 
request.  

Three measures are discussed: autocorrelation of the chain of draws from the Gibbs sampler (at a 
lag equal to 10), the inefficiency factor, and the measure of the number of draws to get a 
stationary distribution from the Gibbs sampler (Raftery and Lewis, 1992). The convergence 
diagnostics for the AR parameters and the elements of   are presented in Figure D1. Results are 
reported for the first regime only. 

Figure D1: Convergence Diagnostics for the AR Parameters and the Elements of the Error 
Covariance Matrix, First Regime 

Note: The x-axis contains all the AR parameters and elements of the error covariance matrix. 
 
All three statistics suggest convergence of the sampler. For the threshold value, the delay 
parameter, and degrees of freedom, the convergence diagnostics provide a similar conclusion 
(Table 1).  

 

Table D1: Convergence Diagnostics for Selected Parameters 

Parameter: Threshold value Delay parameter Degrees of freedom 
Statistics:    
Autocorr. at lag=10 0.0432 0.0188 0.0135 
Inefficiency factor 0.4283 1.2421 0.3599 
Number of draws 1043 8888 960 
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Appendix E: RMSE 

Table E1: RMSE, Models with BAA Spread 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.23 0.89 0.37 0.47 1 1.32 0.76 0.33 0.52 
2 1.39 1.12 0.69 0.74 2 1.44 0.85 0.60 0.76 
3 1.49 1.14 0.97 0.87 3 1.59 0.88 0.89 0.89 
4 1.52 1.06 1.27 0.97 4 1.56 0.96 1.23 1.04 
5 1.56 0.98 1.55 1.05 5 1.57 1.03 1.57 1.17 
6 1.55 0.98 1.81 1.11 6 1.60 1.02 1.92 1.26 
7 1.58 0.97 2.06 1.14 7 1.64 1.04 2.28 1.31 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.14 0.92 0.36 0.46 1 1.27 0.73 0.33 0.52 
2 1.28 1.22 0.68 0.74 2 1.39 0.81 0.61 0.75 
3 1.41 1.31 1.00 0.91 3 1.54 0.84 0.91 0.90 
4 1.46 1.33 1.32 1.03 4 1.54 0.95 1.26 1.05 
5 1.53 1.28 1.61 1.10 5 1.56 0.98 1.62 1.18 
6 1.54 1.27 1.88 1.16 6 1.55 1.02 1.99 1.28 
7 1.59 1.25 2.13 1.19 7 1.60 1.02 2.37 1.35 
Note: The lowest value for a particular variable and horizon is in bold. 

 

Table E2: RMSE, Models with Mix Variable 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.22 0.81 0.35 0.0064 1 1.14 0.80 0.62 0.0066 
2 1.29 1.02 0.65 0.0061 2 1.23 0.94 0.96 0.0065 
3 1.35 1.07 0.94 0.0063 3 1.28 1.05 1.32 0.0072 
4 1.37 1.06 1.26 0.0061 4 1.34 1.13 1.63 0.0074 
5 1.48 1.02 1.55 0.0062 5 1.52 1.19 1.95 0.0077 
6 1.49 1.03 1.82 0.0063 6 1.62 1.19 2.18 0.0083 
7 1.56 1.01 2.06 0.0064 7 1.76 1.21 2.42 0.0086 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.10 0.92 0.36 0.0066 1 1.18 0.83 0.54 0.0064 
2 1.18 1.21 0.67 0.0063 2 1.15 0.94 0.89 0.0067 
3 1.25 1.31 0.98 0.0062 3 1.22 1.03 1.17 0.0071 
4 1.31 1.34 1.30 0.0061 4 1.26 1.09 1.47 0.0070 
5 1.44 1.31 1.60 0.0061 5 1.44 1.10 1.77 0.0072 
6 1.47 1.30 1.87 0.0062 6 1.50 1.11 2.03 0.0075 
7 1.53 1.28 2.12 0.0063 7 1.59 1.09 2.27 0.0081 
Note: The lowest value for a particular variable and horizon is in bold. 
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Table E3: RMSE, Models with FCI 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.17 1.03 0.36 0.40 1 1.31 0.99 0.49 0.46 
2 1.43 1.51 0.71 0.57 2 1.68 1.39 0.94 0.68 
3 1.55 1.85 1.06 0.67 3 1.93 1.72 1.37 0.84 
4 1.59 2.06 1.45 0.74 4 2.04 2.04 1.76 0.98 
5 1.57 2.19 1.80 0.79 5 2.20 2.38 2.09 1.14 
6 1.63 2.27 2.13 0.85 6 2.45 2.89 2.41 1.31 
7 1.67 2.35 2.43 0.92 7 2.78 3.67 2.76 1.53 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 1.10 0.87 0.34 0.36 1 1.36 0.90 0.57 0.41 
2 1.31 1.14 0.66 0.52 2 1.52 1.05 1.06 0.56 
3 1.43 1.21 0.97 0.61 3 1.69 1.12 1.51 0.67 
4 1.48 1.23 1.31 0.69 4 1.66 1.15 1.88 0.76 
5 1.51 1.18 1.63 0.75 5 1.74 1.16 2.19 0.85 
6 1.53 1.17 1.91 0.80 6 1.81 1.21 2.46 0.92 
7 1.58 1.15 2.17 0.83 7 1.86 1.27 2.72 0.99 
Note: The lowest value for a particular variable and horizon is in bold. 

 
 
 
 

Table E4: RMSE, AR(1) Model 

Output gr. Inflation FF rate BAA Mix var. FCI 
1 1.27 0.77 0.42 0.49 0.0063 0.41 
2 1.44 0.95 0.76 0.80 0.0061 0.63 
3 1.51 1.00 1.09 1.03 0.0063 0.78 
4 1.54 1.02 1.42 1.17 0.0062 0.89 
5 1.55 1.01 1.72 1.27 0.0062 0.98 
6 1.57 1.01 1.99 1.33 0.0062 1.05 
7 1.60 1.00 2.24 1.38 0.0063 1.10 
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Appendix F: Average Logarithmic Score 

Table F1: Average Logarithmic Score, Models with BAA Spread 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -1.06 -0.84 -0.82 -0.74 1 -1.00 -0.90 -0.83 -0.66 
2 -1.12 -0.97 -0.87 -0.73 2 -1.01 -1.01 -0.90 -0.67 
3 -1.20 -1.13 -0.92 -0.68 3 -1.08 -1.02 -0.95 -0.65 
4 -1.24 -1.20 -0.96 -0.62 4 -1.12 -1.03 -1.00 -0.63 
5 -1.29 -1.21 -1.01 -0.58 5 -1.17 -1.10 -1.04 -0.61 
6 -1.31 -1.24 -1.05 -0.54 6 -1.20 -1.16 -1.08 -0.59 
7 -1.33 -1.25 -1.08 -0.50 7 -1.22 -1.22 -1.11 -0.56 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -1.00 -1.04 -0.81 -0.67 1 -0.93 -0.95 -0.82 -0.64 
2 -1.07 -1.23 -0.86 -0.66 2 -0.95 -1.03 -0.88 -0.63 
3 -1.13 -1.41 -0.90 -0.61 3 -1.02 -1.06 -0.93 -0.60 
4 -1.17 -1.49 -0.94 -0.56 4 -1.06 -1.06 -0.97 -0.57 
5 -1.22 -1.50 -0.97 -0.51 5 -1.09 -1.10 -1.00 -0.55 
6 -1.23 -1.48 -1.00 -0.47 6 -1.10 -1.16 -1.04 -0.53 
7 -1.24 -1.47 -1.04 -0.43 7 -1.13 -1.18 -1.07 -0.50 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 

 

Table F2: Average Logarithmic Score, Models with Mix Variable 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -0.99 -0.83 -0.80 -0.73 1 -0.86 -0.88 -0.82 -0.72 
2 -1.02 -0.92 -0.84 -0.72 2 -0.84 -0.94 -0.86 -0.72 
3 -1.06 -1.06 -0.88 -0.71 3 -0.85 -0.91 -0.90 -0.71 
4 -1.07 -1.11 -0.92 -0.69 4 -0.84 -0.92 -0.93 -0.69 
5 -1.16 -1.12 -0.95 -0.63 5 -0.88 -0.89 -0.96 -0.65 
6 -1.17 -1.10 -0.98 -0.66 6 -0.94 -0.95 -0.99 -0.66 
7 -1.23 -1.13 -1.00 -0.63 7 -0.94 -0.94 -1.01 -0.63 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -0.92 -0.96 -0.79 -0.69 1 -0.87 -0.88 -0.80 -0.68 
2 -0.94 -1.12 -0.83 -0.68 2 -0.84 -0.94 -0.83 -0.68 
3 -0.99 -1.26 -0.85 -0.67 3 -0.88 -0.97 -0.85 -0.69 
4 -1.00 -1.30 -0.88 -0.66 4 -0.87 -1.00 -0.86 -0.67 
5 -1.07 -1.29 -0.91 -0.61 5 -0.93 -1.02 -0.88 -0.64 
6 -1.08 -1.29 -0.93 -0.63 6 -0.94 -1.04 -0.90 -0.63 
7 -1.12 -1.32 -0.95 -0.61 7 -0.94 -1.03 -0.92 -0.64 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 
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Table F3: Average Logarithmic Score, Models with FCI 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -1.04 -0.81 -0.80 -0.74 1 -0.95 -0.90 -0.81 -0.73 
2 -1.08 -0.92 -0.86 -0.71 2 -0.94 -1.00 -0.87 -0.73 
3 -1.14 -1.07 -0.91 -0.69 3 -0.96 -1.00 -0.93 -0.73 
4 -1.15 -1.13 -0.96 -0.66 4 -0.97 -0.98 -0.99 -0.72 
5 -1.21 -1.15 -1.01 -0.64 5 -1.01 -0.97 -1.05 -0.70 
6 -1.24 -1.17 -1.04 -0.62 6 -1.05 -0.99 -1.10 -0.69 
7 -1.26 -1.19 -1.07 -0.61 7 -1.08 -1.01 -1.14 -0.68 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond.
1 -0.98 -1.03 -0.81 -0.66 1 -0.92 -0.94 -0.83 -0.69 
2 -1.03 -1.18 -0.85 -0.65 2 -0.92 -1.03 -0.89 -0.68 
3 -1.09 -1.33 -0.89 -0.64 3 -0.95 -1.05 -0.95 -0.67 
4 -1.10 -1.38 -0.93 -0.64 4 -0.98 -1.05 -1.00 -0.66 
5 -1.13 -1.40 -0.96 -0.63 5 -1.01 -1.05 -1.06 -0.65 
6 -1.14 -1.36 -0.98 -0.63 6 -1.04 -1.07 -1.11 -0.64 
7 -1.15 -1.36 -1.00 -0.62 7 -1.06 -1.06 -1.16 -0.63 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 
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Appendix G: Average Logarithmic Score, 2002Q4–2008Q2 

Table G1: Average Logarithmic Score, Models with BAA Spread, 2002Q4–2008Q2 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.90 -0.67 -0.84 -0.70 1 -0.94 -0.63 -0.81 -0.80 
2 -0.88 -0.62 -0.91 -0.74 2 -0.88 -0.57 -0.86 -0.89 
3 -0.89 -0.62 -0.90 -0.76 3 -0.85 -0.56 -0.83 -0.93 
4 -0.89 -0.59 -0.87 -0.76 4 -0.83 -0.55 -0.79 -0.95 
5 -0.90 -0.57 -0.82 -0.74 5 -0.81 -0.53 -0.75 -0.95 
6 -0.92 -0.54 -0.80 -0.72 6 -0.84 -0.51 -0.71 -0.95 
7 -0.94 -0.53 -0.77 -0.71 7 -0.84 -0.50 -0.68 -0.95 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.82 -0.68 -0.83 -0.66 1 -0.81 -0.64 -0.79 -0.78 
2 -0.81 -0.65 -0.86 -0.68 2 -0.80 -0.61 -0.82 -0.84 
3 -0.82 -0.64 -0.85 -0.68 3 -0.80 -0.59 -0.80 -0.87 
4 -0.81 -0.62 -0.83 -0.67 4 -0.80 -0.58 -0.77 -0.86 
5 -0.82 -0.60 -0.80 -0.65 5 -0.80 -0.56 -0.74 -0.85 
6 -0.84 -0.58 -0.78 -0.64 6 -0.80 -0.54 -0.71 -0.86 
7 -0.85 -0.57 -0.77 -0.62 7 -0.81 -0.53 -0.68 -0.85 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 

 

Table G2: Average Logarithmic Score, Models with Mix Variable, 2002Q4–2008Q2 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.84 -0.66 -0.81 -0.81 1 -0.80 -0.65 -0.82 -0.78 
2 -0.81 -0.61 -0.85 -0.79 2 -0.80 -0.61 -0.83 -0.73 
3 -0.86 -0.59 -0.83 -0.75 3 -0.83 -0.59 -0.80 -0.65 
4 -0.85 -0.56 -0.82 -0.69 4 -0.80 -0.55 -0.76 -0.59 
5 -0.89 -0.54 -0.78 -0.64 5 -0.81 -0.54 -0.75 -0.57 
6 -0.90 -0.53 -0.76 -0.65 6 -0.82 -0.53 -0.69 -0.57 
7 -0.91 -0.53 -0.73 -0.63 7 -0.81 -0.52 -0.67 -0.54 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.81 -0.67 -0.80 -0.77 1 -0.81 -0.63 -0.76 -0.70 
2 -0.79 -0.63 -0.83 -0.74 2 -0.81 -0.62 -0.77 -0.66 
3 -0.81 -0.61 -0.82 -0.73 3 -0.80 -0.59 -0.74 -0.62 
4 -0.80 -0.59 -0.79 -0.67 4 -0.79 -0.56 -0.69 -0.58 
5 -0.82 -0.58 -0.77 -0.63 5 -0.78 -0.55 -0.68 -0.56 
6 -0.83 -0.56 -0.75 -0.65 6 -0.79 -0.55 -0.66 -0.57 
7 -0.85 -0.57 -0.74 -0.63 7 -0.78 -0.54 -0.64 -0.56 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 
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Table G3: Average Logarithmic Score, Models with FCI, 2002Q4–2008Q2 

1 regime, normal errors 2 regimes, normal errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.89 -0.65 -0.82 -0.66 1 -0.83 -0.63 -0.83 -0.65 
2 -0.90 -0.60 -0.89 -0.66 2 -0.83 -0.58 -0.88 -0.64 
3 -0.85 -0.58 -0.89 -0.67 3 -0.83 -0.56 -0.87 -0.64 
4 -0.83 -0.55 -0.87 -0.66 4 -0.86 -0.54 -0.89 -0.63 
5 -0.86 -0.54 -0.83 -0.66 5 -0.91 -0.52 -0.89 -0.62 
6 -0.87 -0.52 -0.80 -0.66 6 -0.93 -0.51 -0.90 -0.61 
7 -0.89 -0.52 -0.77 -0.65 7 -0.94 -0.50 -0.91 -0.60 

1 regime, t-distributed errors 2 regimes, t-distributed errors 
 Output gr. Inflation FF rate Cr. cond.  Output gr. Inflation FF rate Cr. cond. 
1 -0.81 -0.66 -0.81 -0.65 1 -0.79 -0.65 -0.82 -0.64 
2 -0.81 -0.62 -0.86 -0.65 2 -0.80 -0.61 -0.86 -0.64 
3 -0.80 -0.61 -0.85 -0.66 3 -0.82 -0.60 -0.86 -0.63 
4 -0.79 -0.59 -0.84 -0.65 4 -0.87 -0.58 -0.89 -0.62 
5 -0.81 -0.57 -0.81 -0.65 5 -0.90 -0.57 -0.91 -0.62 
6 -0.82 -0.56 -0.79 -0.65 6 -0.93 -0.56 -0.94 -0.61 
7 -0.83 -0.56 -0.77 -0.65 7 -0.94 -0.56 -0.96 -0.60 
Note: Bold indicates the highest average logarithmic score within the TVAR models. 
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